Preview

Messenger of ANESTHESIOLOGY AND RESUSCITATION

Advanced search

The influence of nitric oxide delivery on the processes of apoptosis, necroptosis and pyroptosis in the renal parenchyma after simulating cardiopulmonary bypass: an experimental study

https://doi.org/10.24884/2078-5658-2024-21-3-26-33

Abstract

The objective was to study the effect of the delivery of exogenous nitric oxide on the severity of apoptosis, pyroptosis, and necroptosis of the renal parenchyma after simulating cardiopulmonary bypass and cardiopulmonary bypass with circulatory arrest.

Materials and Methods. 24 Altai breed rams were randomized into 4 equal groups. In the CPB and CPB+NO groups, we simulated cardiopulmonary bypass without circulatory arrest. In the CPB+CA and CPB+CA+NO groups, we simulated cardiopulmonary bypass with circulatory arrest. In the CPB+NO, CPB+CA+NO groups, NO was given perioperative in concentration of 80 ppm. In the CPB, CPB+CA groups, we supplied a standard oxygen-air mixture without NO.

Results. In the CPB+CA+NO group, the TNF-α concentration was statistically significantly lower: 899 [739; 1019] ng/g compared to the CPB+CA group 1716 [1284; 2201] ng/g, p = 0.026. The remaining markers of programmed cell death did not differ between groups.

Conclusions. Perioperative nitric oxide delivery reduces the expression of the extrinsic pathway of apoptosis of renal parenchyma cells in simulating operations with artificial circulation and circulatory arrest. Perioperative nitric oxide delivery at a dose of 80 ppm does not increase the processes of apoptosis, pyroptosis, and necroptosis in renal parenchyma.

About the Authors

M. A. Tyo
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Tyo Mark A., Junior Research Fellow, Laboratory of Critical Care Medicine

111a, Kievskaya str., Tomsk, 634012 



N. O. Kamenshchikov
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Kamenshchikov Nikolay O., Cand. of Sci. (Med.), Head of the Laboratory of Critical Care Medicine

111a, Kievskaya str., Tomsk, 634012 



Yu. K. Podoksenov
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Podoksenov Yury K., Dr. of Sci. (Med.), Leading Research Fellow, Laboratory of Critical Care Medicine

111a, Kievskaya str., Tomsk, 634012 



A. V. Mukhomedzyanov
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Mukhomedzyanov Alexandr V., Cand. of Sci. (Med.), Research Fellow, Laboratory of Experimental Cardiology

111a, Kievskaya str., Tomsk, 634012 



L. N. Maslov
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Maslov Leonid N., Dr. of Sci. (Med.), Head of the Laboratory of Experimental Cardiology

111a, Kievskaya str., Tomsk, 634012 



I. V. Kravchenko
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Kravchenko Igor V., Junior Research Fellow, Laboratory of Critical Care Medicine

111a, Kievskaya str., Tomsk, 634012 



E. A. Churilina
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Churilina Elena A., Junior Research Fellow, Laboratory of Critical Care Medicine

111a, Kievskaya str., Tomsk, 634012 



B. N. Kozlov
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Kozlov Boris N., Dr. of Sci. (Med.), Leading Research Fellow, Laboratory of Critical Care Medicine

111a, Kievskaya str., Tomsk, 634012 



References

1. Kamenshchikov N.O., Podoksenov Y.K., Diakova M.L. et al. Acute kidney injury in cardiac surgery: definition, epidemiology, outcomes and socio-economic significance. Patologiya Krovoobrashcheniya i Kardiokhirurgiya, 2020, vol. 24, no. 4, pp. 11‒21. (In Russ.) DOI: 10.21688/1681-3472-2020-4-11-21.

2. Tyo M.A., Kamenshchikov N.O., Podoksenov Y.K. et al. The effect of nitric oxide donation on the severity of mitochondrial disfunction to the renal tissue in cardiopulmonary bypass simulation: an experimental study. Annals of Critical Care, 2023, no. 4, pp. 176‒184. (In Russ.) DOI: 10.21320/1818-474X-2023-4-176-184.

3. Tyo M.A., Kamenshchikov N.O., Podoksenov Y.K. et al. Effect of nitric oxide delivery on energy supply of renal tissue in cardiopulmonary bypass:an experimental study. The Siberian Journal of Clinical and Experimental Medicine, 2024, vol. 39, no. 1, pp. 163 –170. (In Russ.) DOI: 10.29001/2073-8552-2022-592.

4. Bedford M., Stevens P.E., Wheeler T.W., Farmer C.K. What is the real impact of acute kidney injury? BMC Nephrol, 2014, vol. 15, pp. 95. DOI: 10.1186/1471-2369-15-95.

5. Billings F.T., Pretorius M., Schildcrout J.S. et al. Obesity and oxidative stress predict AKI after cardiac surgery. Clin. J. Am. Soc. Nephrol, 2012, vol. 23, no. 7, pp. 1221‒1228. DOI: 10.1681/asn.2011090940.

6. Carlström M. Nitric oxide signalling in kidney regulation and cardiometabolic health. Nat Rev Nephrol, 2021, vol. 17, no. 9, pp. 575‒590. DOI:10.1038/s41581-021-00429-z

7. Cherry A.D. Mitochondrial dysfunction in cardiac surgery. Anesthesiol. Clin, 2019, vol. 37, no. 4, pp. 769‒785. DOI: 10.1016/j.anclin.2019.08.003.

8. Galluzzi L., Bravo-San Pedro J.M., Kepp O. et al. Regulated cell death and adaptive stress responses. Cell Mol. Life Sci, 2016, vol. 73, no. 11‒12, pp. 2405‒2410. DOI: 10.1007/s00018-016-2209-y.

9. Hernandez-Cuellar E., Tsuchiya K., Hara H. et al. Cutting edge: nitric oxide inhibits the NLRP3 inflammasome. J. Immunol, 2012, vol. 189, no. 11, pp. 5113‒5117. DOI: 10.4049/jimmunol.1202479.

10. Hou L., Yang Z., Wang Z. et al. NLRP3/ASC-mediated alveolar macrophage pyroptosis enhances HMGB1 secretion in acute lung injury induced by cardiopulmonary bypass. Lab. Invest, 2018, vol. 98, no. 8, pp. 1052‒1064. DOI: 10.1038/s41374-018-0073-0.

11. Kers J., Leemans J.C., Linkermann A. An Overview of Pathways of Regulated Necrosis in Acute Kidney Injury. Semin. Nephrol, 2016, vol. 36, no. 3, pp. 139‒152. DOI: 10.1016/j.semnephrol.2016.03.002.

12. Kiers H.D., Boogaard M. van den, Schoenmakers M.C. et al. Comparison and clinical suitability of eight prediction models for cardiac surgery-related acute kidney injur. Nephrol. Dial. Transplant, 2013, vol. 28, no. 2, pp. 345‒351. DOI: 10.1093/ndt/gfs518.

13. Kim Y.M., Bombeck C.A., Billia T.R. Nitric oxide as a bifunctional regulator of apoptosis. Circ. Res, 1999, vol. 84, no. 3, pp. 253−256. DOI: 10.1161/01.res.84.3.253.

14. Kumar A.B., Suneja M. Cardiopulmonary bypass –associated acute kidney injury. Anesthesiology, 2011, vol. 114, no. 4, pp. 964‒970. DOI: 10.1097/aln.0b013e318210f86a.

15. Lei C., Berra L., Rezoagli E. et al. Nitric oxide decreases acute kidney injury and stage 3 chronic kidney disease after cardiac surgery. Am. J. Respir. Crit. Care Med, 2018, vol. 198, no. 10, pp. 1279‒1287. DOI: 10.1164/rccm.201710-2150OC.

16. Liu L., Stamler J. NO: an inhibitor of cell death. Cell Death Differ, 1999, vol. 6, pp. 937‒942. DOI: 10.1038/sj.cdd.4400578.

17. Miao W., Qu Z., Shi K. et al. RIP3 S-nitrosylation contributes to cerebral ischemic neuronal injury. Brain Res, 2015, vol. 1627, P.165−176. DOI: 10.1016/j.brainres.2015.08.020.

18. Nieuwenhuijs-Moeke G.J., Pischke S.E., Berger S.P. et al. Ischemia and Reperfusion Injury in Kidney Transplantation: Relevant Mechanisms in Injury and Repair. J. Clin. Med, 2020, vol. 9, no. 1, pp. 253. DOI: 10.3390/jcm9010253.

19. Ruan S.Y., Huang T.M., Wu H.Y. et al. Inhaled nitric oxide therapy and risk of renal dysfunction: a systematic review and meta-analysis of randomized trials. Crit Care, 2015, vol. 19, no. 1, pp. 137. DOI: 10.1186/s13054-015-0880-2.

20. Saikumar P., Venkatachalam M.A. Role of apoptosis in hypoxic/ischemic damage in the kidney. Semin. Nephrol, 2003, vol. 23, no. 6, pp. 511‒521. DOI: 10.1053/s0270-9295(03)00130-x.

21. Tu L.N., Hsieh L., Kajimoto M. et al. Shear stress associated with cardiopulmonary bypass induces expression of inflammatory cytokines and necroptosis in monocytes. JCI Insight, 2021, vol. 6, no. 1, pp. e141341. DOI: 10.1172/jci.insight.141341.

22. Wang Y., Chen C., Loake G.J., Chu C. Nitric oxide: promoter or suppressor of programmed cell death? Protein Cell, 2010, vol. 1, no. 2, pp. 133‒142. DOI: 10.1007/s13238-010-0018-x.

23. Xu X.X., Shi R.X., Fu Y. et al. Neuronal nitric oxide synthase/reactive oxygen species pathway is involved in apoptosis and pyroptosis in epilepsy. Neural. Regen. Res, 2023, vol. 18, no. 6, pp. 1277‒1285. DOI: 10.4103/1673-5374.357906.

24. Yan Y., Kamenshchikov N., Zheng Z., Lei C. Inhaled nitric oxide and postoperative outcomes in cardiac surgery with cardiopulmonary bypass: A systematic review and meta-analysis. Nitric Oxide, 2024, vol. 146, no. 64, pp. 64‒74. DOI: 10.1016/j.niox.2024.03.004.

25. Yeh C.H., Lin Y.M., Wu Y.C. et al. Nitric oxide attenuates cardiomyocytic apoptosis via diminished mitochondrial complex I up-regulation from cardiac ischemia-reperfusion injury under cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg, 2004, vol. 128, no. 2, pp. 180‒188. DOI: 10.1016/j.jtcvs.2003.11.056.


Review

For citations:


Tyo M.A., Kamenshchikov N.O., Podoksenov Yu.K., Mukhomedzyanov A.V., Maslov L.N., Kravchenko I.V., Churilina E.A., Kozlov B.N. The influence of nitric oxide delivery on the processes of apoptosis, necroptosis and pyroptosis in the renal parenchyma after simulating cardiopulmonary bypass: an experimental study. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2024;21(3):26-33. (In Russ.) https://doi.org/10.24884/2078-5658-2024-21-3-26-33



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)