DRUG NEUROPROTECTION IN FULL-TERM NEWBORNS WITH SEVERE CEREBRAL ISCHEMIA
https://doi.org/10.21292/2078-5658-2016-13-3-51-62
Abstract
Severe cerebral ischemia of newborns remains to be the main cause of children disability and mortality and neuroprotection is the main way to reduce them. Therapeutic hypothermia being widely introduced into clinical practice nowadays has the number of limitations. It requires searching for effective pharmacological neuroprotection providing impact on numerous pathogenic mechanisms of neuronal damage. These promising neuroprotective agents include melatonin, erythropoietin, topiramate, cannabinoids, barbiturates and magnesium sulfate. Promising neuroprotection in newborns can include antenatal use in case of fetal distress or potentation and/or postponed use of therapeutic hypothermia with their post-natal administration. Data currently available from clinical studies do not allow recommending any of the above drugs for routine clinical use. However in future clinical studies now in progress will allow finding the effective neuroprotection and optimal mode for its use in newborns with severe cerebral ischemia.
About the Authors
A. A. ZadvornovRussian Federation
Anesthesiologist and Emergency Care Physician
A. V. Golomidov
Russian Federation
Candidate of Medical Sciences, Head of Newborns Intensive Care Department
E. V. Grigoriev
Russian Federation
Doctor of Medical Sciences, Professor, Deputy Director for Research and Treatment
References
1. Alonso-Alconada D., Alvarez A., Alvarez F.J. et al. The cannabinoid WIN 55212-2 mitigates apoptosis and mitochondrial dysfunction after hypoxia ischemia. Neurochem. Res., 2012, vol. 37, no. 1, pp. 161-170.
2. Aly H., Elmahdy H., El-Dib M. et al. Melatonin use for neuroprotection in perinatal asphyxia: a randomized controlled pilot study. J. Perinatol., 2015, vol. 35, no. 3, pp. 186-191.
3. Aryana P., Rajaei S., Bagheri A. et al. Acute effect of intravenous administration of magnesium sulfate on serum levels of interleukin-6 and tumor necrosis factor-α in patients undergoing elective coronary bypass graft with cardiopulmonary bypass. Anesth. Pain Med., 2014, vol. 4, no. 3, pp. e16316.
4. Avasiloaiei A., Dimitriu C., Moscalu M. et al. High-dose phenobarbital or erythropoietin for the treatment of perinatal asphyxia in term newborns. Pediatr. Int., 2013, vol. 55, no. 5, pp. 589-593.
5. Barks J.D., Silverstein F.S., Sims K, et al. Glutamate recognition sites in human fetal brain. Neurosci., Lett., 1988, vol. 84, pp. 131-136.
6. Benders M.J., Bos A.F., Rademaker C.M. et al. Early postnatal allopurinol does not improve short term outcome after severe birth asphyxia. Arch. Dis. Child Fetal Neonatal. Ed., 2006, vol. 91, no. 3, pp. F163– F165.
7. Berger R., Lehmann T., Karcher J. et al. Low dose flunarizine protects the fetal brain from ischemic injury in sheep. Pediatr. Res., 1998, vol. 44, no. 3, pp. 277-282.
8. Blomgren K., Hagberg H. Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radic. Biol. Med., 2006, vol. 40, no. 3, pp. 388-397.
9. Boehm F.H., Liem L.K., Stanton P.K. et al. Phenytoin protects against hypoxia-induced death of cultured hippocampal neurons. Neurosci. Lett., 1994, vol. 175, no. 1-2, pp. 171-174.
10. Calcerrada P., Peluffo G., Radi R. Nitric oxide-derived oxidants with a focus on peroxynitrite: molecular targets, cellular responses and therapeutic implications. Curr. Pharm. Des., 2011, vol. 17, no. 35, pp. 3905-3932.
11. Carino C., Fibuch E.E., Mao L.M. et al. Dynamic loss of surface-expressed AMPA receptors in mouse cortical and striatal neurons during anesthesia. J. Neurosci. Res., 2012, vol. 90, no. 1, pp. 315-323.
12. Chaudhari T., McGuire W. Allopurinol for preventing mortality and morbidity in newborn infants with suspected hypoxic-ischaemic encephalopathy. Co-chrane Database Syst. Rev., 2008, vol. 2, CD006817.
13. Crumrine R.C., Bergstrand K., Cooper A.T. et al. Lamotrigine protects hippo-campal CA1 neurons from ischemic damage after cardiac arrest. Stroke, 1997, vol. 28, no. 11, pp. 2230-2236.
14. Dingley J., Tooley J., Porter H. et al. Xenon provides short-term neuroprotection in neonatal rats when administered after hypoxia-ischemia. Stroke, 2006, vol. 37, no. 2, pp. 501-506.
15. Dixon B.J., Reis C., Ho W.M. et al. Neuroprotective strategies after neonatal hypoxic ischemic encephalopathy. Int. J. Mol. Sci., 2015, vol. 16, no. 9, pp. 22368-22401.
16. El Shimi M.S., Awad H.A., Hassanein S.M. et al. Single dose recombinant erythropoietin versus moderate hypothermia for neonatal hypoxic ischemic encephalopathy in low resource settings. J. Matern. Fetal Neonatal. Med., 2014, vol. 27, no. 13, pp. 1295-300.
17. Elmahdy H., El-Mashad A.R., El-Bahrawy H. et al. Human recombinant erythropoietin in asphyxia neonatorum: pilot trial. Pediatrics, 2010, vol. 125, no. 5, pp. e1135–е1142.
18. Esposito E., Cuzzocrea S. Antiinflammatory activity of melatonin in central nervous system. Curr. Neuropharmacol., 2010, vol. 8, no. 3, pp. 228-242.
19. Evans D.J., Levene M.I., Tsakmakis M. Anticonvulsants for preventing mortality and morbidity in full term newborns with perinatal asphyxia. Cochrane Database Syst. Rev., 2007, vol. 3, CD001240.
20. Felszeghy K., Banisadr G., Rostène W. et al. Dexamethasone downregulates chemokine receptor CXCR4 and exerts neuroprotection against hypoxia/ischemia-induced brain injury in neonatal rats. Neuroimmunomodulation, 2004, vol. 11, no. 6. pp. 404-413.
21. Fernández-López D., Pazos M.R., Tolón R.M. et al. The cannabinoid agonist WIN55212 reduces brain damage in an in vivo model of hypoxic-ischemic encephalopathy in newborn rats. Pediatr. Res., 2007, vol. 62, no. 3, pp. 255-260.
22. Filippi L., Fiorini P., Daniotti M. et al. Safety and efficacy of topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia (NeoNATI). BMC Pediatr., 2012, vol. 12, pp. 144.
23. Filippi L., la Marca G., Fiorini P. et al. Topiramate concentrations in neonates treated with prolonged whole body hypothermia for hypoxic ischemic encephalopathy. Epilepsia, 2009, vol. 50, no. 11, pp. 2355-2361.
24. Filippi L., Poggi C., la Marca G. et al. Oral topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia: a safety study. J. Pediatr., 2010, vol. 157, no. 3, pp. 361-366.
25. Garnier Y., Middelanis J., Jensen A. et al. Neuroprotective effects of magnesium on metabolic disturbances in fetal hippocampal slices after oxygen-glucose deprivation: mediation by nitric oxide system. J. Soc. Gynecol. Investig., 2002, vol. 9, no. 2, pp. 86-92.
26. Godbout J.P., Berg B.M., Kelley K.W. et al. Alpha-Tocopherol reduces lipopolysaccharide-induced peroxide radical formation and interleukin-6 secretion in primary murine microglia and in brain. J. Neuroimmunol., 2004, vol. 149, no. 1-2, pp. 101-109.
27. Hattori H., Morin A.M., Schwartz P.H. et al. Posthypoxic treatment with MK-801 reduces hypoxic-ischemic damage in the neonatal rat. Neurology, 1989, vol. 39, no. 5, pp. 713-718.
28. Ioroi T., Yonetani M., Nakamura H. Effects of hypoxia and reoxygenation on nitric oxide production and cerebral blood flow in developing rat striatum. Pediatr Res., 1998, vol. 43, no. 6, pp. 733-737.
29. Jacobs S.E., Berg M., Hunt R. et al. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev., 2013, vol. 1:CD003311
30. Jandova K., Riljak V., Maresova D. et al. Ascorbic acid and alpha-tocopherol protect age-dependently from hypoxia-induced changes of cortical excitability in developing rats. Neuro Endocrinol. Lett., 2012, vol. 33, no. 5, pp. 530-535.
31. Jou M.J., Peng T.I., Yu P.Z. et al. Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis. J. Pineal. Res., 2007, vol. 43, no. 4, pp. 389-403.
32. Kaandorp J.J., Benders M.J., Rademaker C.M. et al. Antenatal allopurinol for reduction of birth asphyxia induced brain damage (ALLO-Trial); a randomized double blind placebo controlled multicenter study. BMC Pregnancy Childbirth, 2010, vol. 10, pp. 8.
33. Kaandorp J.J., Benders M.J., Schuit E. et al. Maternal allopurinol administration during suspected fetal hypoxia: a novel neuroprotective intervention? A multi-centrerandomised placebo controlled trial. Arch. Dis. Child Fetal Neonatal. Ed., 2015, vol. 100, no. 3, pp. F216–F223.
34. Kaandorp J.J., van Bel F., Veen S. et al. Long-term neuroprotective effects of allopurinol after moderate perinatal asphyxia: follow-up of two randomized controlled trials. Arch. Dis. Child Fetal Neonatal. Ed., 2012, vol. 97, no. 3, pp. F162– F 166.
35. Kawakami M., Sekiguchi M., Sato K. et al. Erythropoietin receptor-mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia. J. Biol. Chem., 2001, vol. 276, no. 42, pp. 39469-39475.
36. Koh S., Tibayan F.D., Simpson J.N. et al. NBQX or topiramate treatment after perinatal hypoxia-induced seizures prevents later increases in seizure-induced neuronal injury. Epilepsia, 2004, vol. 45, no. 6, pp. 569-575.
37. Kohmura E., Yamada K., Hayakawa T. et al. Neurotoxicity caused by glutamate after subcritical hypoxia is prevented by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX): an in vitro study using rat hippocampal neurons. Neurosci. Lett., 1991, vol. 121, no. 1-2, pp. 159-162.
38. Kumral A., Gonenc S., Acikgoz O. et al. Erythropoietin increases glutathione peroxidase enzyme activity and decreases lipid peroxidation levels in hypoxicischemic brain injury in neonatal rats. Biol. Neonate., 2005, vol. 87, no. 1, pp. 15-18.
39. Lapchak P.A., Zivin J.A. Ebselen, a seleno-organic antioxidant, is neuroprotective after embolic strokes in rabbits: synergism with low-dose tissue plasmino-gen activator. Stroke, 2003, vol. 34, no. 8, pp. 2013-2018.
40. Lin C.Y., Tsai P.S., Hung Y.C. et al. L-type calcium channels are involved in mediating the anti-inflammatory effects of magnesium sulphate. Br. J. Anaesth., 2010, vol. 104, no. 1, pp. 44-51.
41. Lipton S.A., Choi Y.B., Pan Z.H. et al. A redox-based mechanism for the neuro-protective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature, 1993, vol. 364, no. 6438, pp. 626-632.
42. Liu Y., Barks J.D., Xu G. et al. Topiramate extends the therapeutic window for hypothermia-mediated neuroprotection after stroke in neonatal rats. Stroke, 2004, vol. 35, no. 6, pp. 1460-1465.
43. Magee L., Sawchuck D., Synnes A. et al. SOGC Clinical Practice Guideline. Magnesium sulphate for fetal neuroprotection. J. Obstet. Gynaecol. Can., 2011, vol. 33, no. 5, pp. 516-529.
44. Mao X.Y., Cao Y.G., Ji Z. et al. Topiramate protects against glutamate ex-citotoxicity via activating BDNF/TrkB-dependent ERK pathway in rodent hippocampal neurons. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2015, vol. 60, pp. 11-17.
45. Marsicano G., Moosmann B., Hermann H. et al. Neuroprotective properties of cannabinoids against oxidative stress: role of the cannabinoid receptor CB1. J. Neurochem., 2002, vol. 80, no. 3, pp. 448-456.
46. Matute C., Alberdi E., Domercq M. et al. Excitotoxic damage to white matter. J. Anat., 2007, vol. 210, no. 6, pp. 693-702.
47. McQuillen P.S., Ferriero D.M. Selective vulnerability in the developing central nervous system. Pediatr. Neurol., 2004, vol. 30, pp. 227-235.
48. McRae A., Gilland E., Bona E. et al. Microglia activation after neonatal hypoxic-ischemia. Brain. Res. Dev. Brain. Res., 1995, vol. 84, no. 2, pp. 245-252.
49. Meyn D.F.Jr., Ness J., Ambalavanan N. et al. Prophylactic phenobarbital and whole-body cooling for neonatal hypoxic-ischemic encephalopathy. J. Pediatr., 2010, vol. 157, no. 2, pp. 334-336.
50. Monyer H., Hartley D.M., Choi D.W. 21-Aminosteroids attenuate excito-toxic neuronal injury in cortical cell cultures. Neuron., 1990, vol. 5, no. 2, pp. 121-126.
51. Morley P., Hogan M.J., Hakim A.M. Calcium-mediated mechanisms of ischemic injury and protection. Brain Pathol., 1994, vol. 4, no. 1, pp. 37-47.
52. Nguyen T.M., Crowther C.A., Wilkinson D. et al. Magnesium sulphate for women at term for neuroprotection of the fetus. Cochrane Database Syst. Rev., 2013, vol. 2, CD009395.
53. Noor J.I., Ikeda T., Ueda Y. et al. A free radical scavenger, edaravone, inhibits lipid peroxidation and the production of nitric oxide in hypoxic-ischemic brain damage of neonatal rats. Am. J. Obstet. Gynecol., 2005, vol. 193, no. 5, pp. 1703-1708.
54. Nowak L., Bregestovski P., Ascher P. et al. A Magnesium gates glutamate-activated channels in mouse central neurones. Nature, 1984, vol. 307, no. 5950, pp. 462-465.
55. Ogihara T., Hirano K., Ogihara H. et al. Non-protein-bound transition metals and hydroxyl radical generation in cerebrospinal fluid of newborn infants with hypoxic ischemic encephalopathy. Pediatr. Res., 2003, vol. 53, no. 4, pp. 594-599.
56. Pacher P., Nivorozhkin A. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. C. Pharmacol. Rev., 2006, vol. 58, no. 1, pp. 87-114.
57. Palmer C., Roberts R.L., Young P.I. Timing of neutrophil depletion influences long-term neuroprotection in neonatal rat hypoxic-ischemic brain injury. Pediatr Res., 2004, vol. 55, no. 4, pp. 549-556.
58. Robertson N.J., Bhakoo K., Puri B.K. et al. Hypothermia and amiloride preserve energetics in a neonatal brain slice model. Pediatr. Res., 2005, vol. 58, no. 2, pp. 288-296.
59. Rogers E.E., Bonifacio S.L., Glass H.C. et al. Erythropoietin and hypothermia for hypoxic-ischemic encephalopathy. Pediatr. Neurol., 2014, vol. 51, no. 5, pp. 657-662.
60. Romero-Sandoval E.A., Horvath R., Landry R.P. et al. Cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation. Mol. Pain, 2009, vol. 5, pp. 25.
61. Ryang Y.M., Fahlenkamp A.V., Rossaint R. et al. Neuroprotective effects of argon in an in vivo model of transient middle cerebral artery occlusion in rats. Crit. Care Med., 2011, vol. 39, no. 6, pp. 1448-1453.
62. Sarkar S., Barks J.D., Bapuraj J.R. et al. Does phenobarbital improve the effectiveness of therapeutic hypothermia in infants with hypoxic-ischemic encephalopathy? J. Perinatol., 2012, vol. 32, no. 1, pp. 15-20.
63. Schwer C.I., Lehane C., Guelzow T. et al. Thiopental inhibits global protein synthesis by repression of eukaryotic elongation factor 2 and protects from hypoxic neuronal cell death. PLoS One, 2013, vol. 8, no. 10, pp. e77258.
64. Shadid M., Buonocore G., Groenendaal F. et al. Effect of deferoxamine and allopurinol on non-protein-bound iron concentrations in plasma and cortical brain tissue of newborn lambs following hypoxia-ischemia. Neurosci Lett., 1998, vol. 248, no. 1, pp. 5-8.
65. Singh D., Kumar P., Majumdar S. et al. Effect of phenobarbital on free radicals in neonates with hypoxic ischemic encephalopathy – a randomized controlled trial. J. Perinat. Med., 2004, vol. 32, no. 3, pp. 278-281.
66. Sirén A.L., Fratelli M., Brines M. et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc. Natl. AcadSci. USA, 2001, vol. 98, no. 7, pp. 4044-4049.
67. Song Y., Wei E.Q., Zhang W.P. et al. Minocycline protects PC12 cells from ischemic-like injury and inhibits 5-lipoxygenase activation. Neuroreport., 2004, vol. 15, no. 14, pp. 2181-2184.
68. Spandou E., Karkavelas G., Soubasi V. et al. Effect of ketamine on hypo-xic-ischemic brain damage in newborn rats. Brain. Res., 1999, vol. 819, no. 1-2, pp. 1-7.
69. Tagin M., Shah P.S., Lee K.S. Magnesium for newborns with hypoxic-ischemic encephalopathy: a systematic review and meta-analysis. J. Perinatol., 2013, vol. 33, no. 9, pp. 663-669.
70. Thoresen M., Penrice J., Lorek A. et al. Mild hypothermia after severe transient hypoxia-ischemia ameliorates delayed cerebral energy failure in the newborn piglet. Pediatr. Res., 1995, vol. 37, no. 5, pp. 667-670.
71. Tian Y., Guo S.X., Li J.R. et al. Topiramate attenuates early brain injury following subarachnoid haemorrhage in rats via duplex protection against inflammation and neuronal cell death. Brain. Res., 2015, vol. 1622, pp. 174-185.
72. Tutak E., Satar M., Zorludemir S. et al. Neuroprotective effects of indomethacin and aminoguanidine in the newborn rats with hypoxic-ischemic cerebral injury. Neurochem. Res., 2005, vol. 30, no. 8, pp. 937-942.
73. van den Tweel E.R., van Bel F., Kavelaars A. et al. Long-term neuroprotection with 2-iminobiotin, an inhibitor of neuronal and inducible nitric oxide synthase, after cerebral hypoxia-ischemia in neonatal rats. J. Cereb. Blood Flow Metab., 2005, vol. 25, no. 1, pp. 67-74.
74. Vexler Z.S., Wong A., Francisco C. et al. Fructose-1,6-bisphosphate preserves intracellular glutathione and protects cortical neurons against oxidative stress. Brain. Res., 2003, vol. 960, no. 1-2, pp. 90-98.
75. Villa P., van Beek J., Larsen A.K. et al. Reduced functional deficits, neuroinflammation, and secondary tissue damage after treatment of stroke by nonerythropoietic erythropoietin derivatives. J. Cereb. Blood Flow Metab., 2007, vol. 27, no. 3, pp. 552-563.
76. Wang X., Svedin P., Nie C. et al. N-acetylcysteine reduces lipopolysaccha-ride-sensitized hypoxic-ischemic brain injury. Ann. Neurol., 2007, vol. 61, no. 3, pp. 263-271.
77. Wang Y.J., Pan K.L., Zhao X.L. et al. Therapeutic effects of erythropoietin on hypoxic-ischemic encephalopathy in neonates. Zhongguo Dang Dai ErKeZaZhi, 2011, vol. 13, no. 11, pp. 855-858.
78. Williams G.D., Palmer C., Heitjan D.F. et al. Allopurinol preserves cerebral energy metabolism during perinatal hypoxia-ischemia: a 31P NMR study in unanesthetized immature rats. Neurosci. Lett., 1992, vol. 144, no. 1-2, pp. 103-106.
79. Xie C., Zhou K., Wang X. et al. Therapeutic benefits of delayed lithium administration in the neonatal rat after cerebral hypoxia-ischemia. PLoS One, 2014, vol. 9, no. 9, pp. e107192
80. Yu T., Kui L.Q., Ming Q.Z. Effect of asphyxia on non-protein-bound iron and lipid peroxidation in newborn infants. Dev. Med. Child Neurol., 2003, vol. 45, no. 1, pp. 24-27.
81. Yager J.Y., Thornhill J.A. The effect of age on susceptibility to hypoxic-ischemic brain damage. Neurosci. Biobehav. Rev., 1997, vol. 21, pp. 167-174.
82. Yue X., Mehmet H., Penrice J. et al. Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia-ischaemia. Neuropathol. Appl. Neurobiol., 1997, vol. 23, no. 1, pp. 16-25.
83. Zhao L., An R., Yang Y. et al. Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: the role of SIRT1 signaling. J. Pineal. Res., 2015, vol. 59, no. 2, pp. 230-239.
84. Zhu C., Kang W., Xu F. et al. Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics, 2009, vol. 124, no. 2, pp. e218–е226.
85. Zhu C., Wang X., Xu F. et al. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell. Death Differ., 2005, vol. 12, no. 2, pp. 162-176.
Review
For citations:
Zadvornov A.A., Golomidov A.V., Grigoriev E.V. DRUG NEUROPROTECTION IN FULL-TERM NEWBORNS WITH SEVERE CEREBRAL ISCHEMIA. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2016;13(3):51-62. (In Russ.) https://doi.org/10.21292/2078-5658-2016-13-3-51-62