Preview

Вестник анестезиологии и реаниматологии

Расширенный поиск

МЕДИКАМЕНТОЗНАЯ НЕЙРОПРОТЕКЦИЯ У ДОНОШЕННЫХ НОВОРОЖДЕННЫХ С ТЯЖЕЛОЙ ЦЕРЕБРАЛЬНОЙ ИШЕМИЕЙ

https://doi.org/10.21292/2078-5658-2016-13-3-51-62

Полный текст:

Аннотация

Тяжелая церебральная ишемия новорожденных остается основной причиной детской инвалидизации и смертности, основным способом снижения которых является применение нейропротекции. Широко внедряемая в настоящий момент в клиническую практику терапевтическая гипотермия обладает рядом ограничений. Это требует поиска эффективных фармакологических нейропротекторов, воздействующих на широкий спектр патогенетических механизмов нейронального повреждения. Такими перспективными нейропротекторами являются мелатонин, эритропоэтин, топирамат, каннабиноиды, барбитураты и магния сульфат. Перспективными направлениями нейропротекции у новорожденных могут быть антенатальное применение при дистрессе плода или потенцирование и/или отсрочка применения терапевтической гипотермии при их постнатальном введении. Имеющиеся на текущий момент данные клинических исследований не позволяют рекомендовать какой-либо из этих препаратов для рутинного клинического применения. Однако проводимые в настоящее время клинические исследования более высокого уровня могут позволить в перспективе выявить эффективные нейропротекторы и оптимальный режим их применения у новорожденных с тяжелой церебральной ишемией.

 

Об авторах

А. А. Задворнов
Детская городская клиническая больница № 5, г. Кемерово
Россия
врач анестезиолог-реаниматолог


А. В. Голомидов
Детская городская клиническая больница № 5, г. Кемерово
Россия
кандидат медицинских наук, заведующий отделением реанимации и интенсивной терапии новорожденных


Е. В. Григорьев
ФГБУ «НИИ комплексных проблем сердечно-сосудистых заболеваний», г. Кемерово
Россия
доктор медицинских наук, профессор, заместитель директора по научной и лечебной работе


Список литературы

1. Alonso-Alconada D., Alvarez A., Alvarez F. J. et al. The cannabinoid WIN 55212-2 mitigates apoptosis and mitochondrial dysfunction after hypoxia ischemia // Neurochem. Res. – 2012. – Vol. 37, № 1. – P. 161–170.

2. Aly H., Elmahdy H., El-Dib M. et al. Melatonin use for neuroprotection in perinatal asphyxia: a randomized controlled pilot study // J. Perinatol. – 2015. – Vol. 35, № 3. – P. 186–191.

3. Aryana P., Rajaei S., Bagheri A. et al. Acute effect of intravenous administration of magnesium sulfate on serum levels of interleukin-6 and tumor necrosis factor-α in patients undergoing elective coronary bypass graft with cardiopulmonary bypass // Anesth. Pain Med. – 2014. – Vol. 4, № 3. – P. e16316.

4. Avasiloaiei A., Dimitriu C., Moscalu M. et al. High-dose phenobarbital or erythropoietin for the treatment of perinatal asphyxia in term newborns // Pediatr. Int. – 2013. – Vol. 55, № 5. – P. 589–593.

5. Barks J. D., Silverstein F. S., Sims K. et al. Glutamate recognition sites in human fetal brain // Neurosci. Lett. – 1988. – Vol. 84. – P. 131–136.

6. Benders M. J., Bos A. F., Rademaker C. M. et al. Early postnatal allopurinol does not improve short term outcome after severe birth asphyxia // Arch. Dis. Child Fetal Neonatal. Ed. – 2006. – Vol. 91, № 3. – P. F163– F165.

7. Berger R., Lehmann T., Karcher J. et al. Low dose flunarizine protects the fetal brain from ischemic injury in sheep // Pediatr. Res. – 1998. – Vol. 44, № 3. – P. 277–282.

8. Blomgren K., Hagberg H. Free radicals, mitochondria, and hypoxia-ischemia in the developing brain // Free Radic. Biol. Med. – 2006. – Vol. 40, № 3. – P. 388–397.

9. Boehm F. H., Liem L. K., Stanton P. K. et al. Phenytoin protects against hypoxia-induced death of cultured hippocampal neurons // Neurosci. Lett. – 1994. – Vol. 175, № 1–2. – P. 171–174.

10. Calcerrada P., Peluffo G., Radi R. Nitric oxide-derived oxidants with a focus on peroxynitrite: molecular targets, cellular responses and therapeutic implications // Curr. Pharm. Des. – 2011. – Vol. 17, № 35. – P. 3905–3932.

11. Carino C., Fibuch E. E., Mao L. M. et al. Dynamic loss of surface-expressed AMPA receptors in mouse cortical and striatal neurons during anesthesia // J. Neurosci. Res. – 2012. – Vol. 90, № 1. – P. 315–323.

12. Chaudhari T., McGuire W. Allopurinol for preventing mortality and morbidity in newborn infants with suspected hypoxic-ischaemic encephalopathy // Cochrane Database Syst. Rev. – 2008. – Vol. 2. – CD006817.

13. Crumrine R. C., Bergstrand K., Cooper A. T. et al. Lamotrigine protects hippocampal CA1 neurons from ischemic damage after cardiac arrest // Stroke. – 1997. – Vol. 28, № 11. – P. 2230–2236.

14. Dingley J., Tooley J., Porter H. et al. Xenon provides short-term neuroprotection in neonatal rats when administered after hypoxia-ischemia // Stroke. – 2006. – Vol. 37, № 2. – P. 501–506.

15. Dixon B. J., Reis C., Ho W. M. et al. Neuroprotective strategies after neonatal hypoxic ischemic encephalopathy // Int. J. Mol. Sci. – 2015. – Vol. 16, № 9. – P. 22368–22401.

16. El Shimi M. S., Awad H. A., Hassanein S. M. et al. Single dose recombinant erythropoietin versus moderate hypothermia for neonatal hypoxic ischemic encephalopathy in low resource settings // J. Matern. Fetal Neonatal. Med. – 2014. – Vol. 27, № 13. – P. 1295–300.

17. Elmahdy H., El-Mashad A. R., El-Bahrawy H. et al. Human recombinant erythropoietin in asphyxia neonatorum: pilot trial // Pediatrics. – 2010. – Vol. 125, № 5. – P. e1135–е1142.

18. Esposito E., Cuzzocrea S. Antiinflammatory activity of melatonin in central nervous system // Curr. Neuropharmacol. – 2010. – Vol. 8, № 3. – P. 228–242.

19. Evans D. J., Levene M. I., Tsakmakis M. Anticonvulsants for preventing mortality and morbidity in full term newborns with perinatal asphyxia // Cochrane Database Syst. Rev. – 2007. – Vol. 3. – CD001240.

20. Felszeghy K., Banisadr G., Rostène W. et al. Dexamethasone downregulates chemokine receptor CXCR4 and exerts neuroprotection against hypoxia/ischemia-induced brain injury in neonatal rats // Neuroimmunomodulation. – 2004. – Vol. 11. – № 6. – Р. 404–413.

21. Fernández-López D., Pazos M. R., Tolón R. M. et al. The cannabinoid agonist WIN55212 reduces brain damage in an in vivo model of hypoxic-ischemic encephalopathy in newborn rats // Pediatr. Res. – 2007. – Vol. 62, № 3. – P. 255–260.

22. Filippi L., Fiorini P., Daniotti M. et al. Safety and efficacy of topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia (NeoNATI) // BMC Pediatr. – 2012. – Vol. 12. – P. 144.

23. Filippi L., la Marca G., Fiorini P. et al. Topiramate concentrations in neonates treated with prolonged whole body hypothermia for hypoxic ischemic encephalopathy // Epilepsia. – 2009. – Vol. 50, № 11. – P. 2355–2361.

24. Filippi L., Poggi C., la Marca G. et al. Oral topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia: a safety study // J. Pediatr. – 2010. – Vol. 157, № 3. – P. 361–366.

25. Garnier Y., Middelanis J., Jensen A. et al. Neuroprotective effects of magnesium on metabolic disturbances in fetal hippocampal slices after oxygen-glucose deprivation: mediation by nitric oxide system // J. Soc. Gynecol. Investig. – 2002. – Vol. 9, № 2. – P. 86–92.

26. Godbout J. P., Berg B. M., Kelley K. W. et al. Alpha-Tocopherol reduces lipopolysaccharide-induced peroxide radical formation and interleukin-6 secretion in primary murine microglia and in brain // J. Neuroimmunol. – 2004. – Vol. 149, № 1–2. – P. 101–109.

27. Hattori H., Morin A. M., Schwartz P. H. et al. Posthypoxic treatment with MK-801 reduces hypoxic-ischemic damage in the neonatal rat // Neurology. – 1989. – Vol. 39, № 5. – P. 713–718.

28. Ioroi T., Yonetani M., Nakamura H. Effects of hypoxia and reoxygenation on nitric oxide production and cerebral blood flow in developing rat striatum // Pediatr Res. – 1998. – Vol. 43, № 6. – P. 733–737.

29. Jacobs S. E., Berg M., Hunt R. et al. Cooling for newborns with hypoxic ischaemic encephalopathy // Cochrane Database Syst. Rev. – 2013. – Vol. 1:CD003311

30. Jandova K., Riljak V., Maresova D. et al. Ascorbic acid and alpha-tocopherol protect age-dependently from hypoxia-induced changes of cortical excitability in developing rats // Neuro Endocrinol. Lett. – 2012. – Vol. 33, № 5. – P. 530–535.

31. Jou M. J., Peng T. I., Yu P. Z. et al. Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis // J. Pineal. Res. – 2007. – Vol. 43, № 4. – P. 389–403.

32. Kaandorp J. J., Benders M. J., Rademaker C. M. et al. Antenatal allopurinol for reduction of birth asphyxia induced brain damage (ALLO-Trial); a randomized double blind placebo controlled multicenter study // BMC Pregnancy Childbirth. – 2010. – Vol. 10. – P. 8.

33. Kaandorp J. J., Benders M. J., Schuit E. et al. Maternal allopurinol administration during suspected fetal hypoxia: a novel neuroprotective intervention? A multicentrerandomised placebo controlled trial // Arch. Dis. Child Fetal. Neonatal. Ed. – 2015. – Vol. 100, № 3. – P. F216–F223.

34. Kaandorp J. J., van Bel F., Veen S. et al. Long-term neuroprotective effects of allopurinol after moderate perinatal asphyxia: follow-up of two randomized controlled trials // Arch. Dis. Child Fetal. Neonatal. Ed. – 2012. – Vol. 97, № 3. – P. F162– F166.

35. Kawakami M., Sekiguchi M., Sato K. et al. Erythropoietin receptor-mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia // J. Biol. Chem. – 2001. – Vol. 276, № 42. – P. 39469–39475.

36. Koh S., Tibayan F. D., Simpson J. N. et al. NBQX or topiramate treatment after perinatal hypoxia-induced seizures prevents later increases in seizure-induced neuronal injury // Epilepsia. – 2004. – Vol. 45, № 6. – P. 569–575.

37. Kohmura E., Yamada K., Hayakawa T. et al. Neurotoxicity caused by glutamate after subcritical hypoxia is prevented by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX): an in vitro study using rat hippocampal neurons // Neurosci. Lett. – 1991. – Vol. 121, № 1–2. – P. 159–162.

38. Kumral A., Gonenc S., Acikgoz O. et al. Erythropoietin increases glutathione peroxidase enzyme activity and decreases lipid peroxidation levels in hypoxicischemic brain injury in neonatal rats // Biol. Neonate. – 2005. – Vol. 87, № 1. – P. 15–18.

39. Lapchak P. A., Zivin J. A. Ebselen, a seleno-organic antioxidant, is neuroprotective after embolic strokes in rabbits: synergism with low-dose tissue plasminogen activator // Stroke. – 2003. – Vol. 34, № 8. – P. 2013–2018.

40. Lin C. Y., Tsai P. S., Hung Y. C. et al. L-type calcium channels are involved in mediating the anti-inflammatory effects of magnesium sulphate // Br. J. Anaesth. – 2010. – Vol. 104, № 1. – P. 44–51.

41. Lipton S. A., Choi Y. B., Pan Z. H. et al. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds // Nature. – 1993. – Vol. 364, № 6438. – P. 626–632.

42. Liu Y., Barks J. D., Xu G. et al. Topiramate extends the therapeutic window for hypothermia-mediated neuroprotection after stroke in neonatal rats // Stroke. – 2004. – Vol. 35, № 6. – P. 1460–1465.

43. Magee L., Sawchuck D., Synnes A. et al. SOGC Clinical Practice Guideline. Magnesium sulphate for fetal neuroprotection // J. Obstet. Gynaecol. Can. – 2011. – Vol. 33, № 5. – P. 516–529.

44. Mao X. Y., Cao Y. G., Ji Z. et al. Topiramate protects against glutamate excitotoxicity via activating BDNF/TrkB-dependent ERK pathway in rodent hippocampal neurons // Prog. Neuropsychopharmacol. Biol. Psychiatry. – 2015. – Vol. 60. – P. 11–17.

45. Marsicano G., Moosmann B., Hermann H. et al. Neuroprotective properties of cannabinoids against oxidative stress: role of the cannabinoid receptor CB1 // J. Neurochem. – 2002. – Vol. 80, № 3. – P. 448–456.

46. Matute C., Alberdi E., Domercq M. et al. Excitotoxic damage to white matter // J. Anat. – 2007. – Vol. 210, № 6. – P. 693–702.

47. McQuillen P. S., Ferriero D. M. Selective vulnerability in the developing central nervous system // Pediatr. Neurol. – 2004. – Vol. 30. – P. 227–235.

48. McRae A., Gilland E., Bona E. et al. Microglia activation after neonatal hypoxic-ischemia // Brain. Res. Dev. Brain. Res. – 1995. – Vol. 84, № 2. – P. 245–252.

49. Meyn D. F. Jr., Ness J., Ambalavanan N. et al. Prophylactic phenobarbital and whole-body cooling for neonatal hypoxic-ischemic encephalopathy // J. Pediatr. – 2010. – Vol. 157, № 2. – P. 334–336.

50. Monyer H., Hartley D. M., Choi D. W. 21-Aminosteroids attenuate excitotoxic neuronal injury in cortical cell cultures // Neuron. – 1990. – Vol. 5, № 2. – P. 121–126.

51. Morley P., Hogan M. J., Hakim A. M. Calcium-mediated mechanisms of ischemic injury and protection // Brain Pathol. – 1994. – Vol. 4, № 1. – P. 37–47.

52. Nguyen T. M., Crowther C. A., Wilkinson D. et al. Magnesium sulphate for women at term for neuroprotection of the fetus // Cochrane Database Syst. Rev. – 2013. – Vol. 2. – CD009395.

53. Noor J. I., Ikeda T., Ueda Y. et al. A free radical scavenger, edaravone, inhibits lipid peroxidation and the production of nitric oxide in hypoxic-ischemic brain damage of neonatal rats // Am. J. Obstet. Gynecol. – 2005. – Vol. 193, № 5. – P. 1703–1708.

54. Nowak L., Bregestovski P., Ascher P. et al. A Magnesium gates glutamate-activated channels in mouse central neurones // Nature. – 1984. – Vol. 307, № 5950. – P. 462–465.

55. Ogihara T., Hirano K., Ogihara H. et al. Non-protein-bound transition metals and hydroxyl radical generation in cerebrospinal fluid of newborn infants with hypoxic ischemic encephalopathy // Pediatr. Res. – 2003. – Vol. 53, № 4. – P. 594–599.

56. Pacher P., Nivorozhkin A. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol // C. Pharmacol. Rev. – 2006. – Vol. 58, № 1. – P. 87–114.

57. Palmer C., Roberts R. L., Young P. I. Timing of neutrophil depletion influences long-term neuroprotection in neonatal rat hypoxic-ischemic brain injury // Pediatr Res. – 2004. – Vol. 55, № 4. – P. 549–556.

58. Robertson N. J., Bhakoo K., Puri B. K. et al. Hypothermia and amiloride preserve energetics in a neonatal brain slice model // Pediatr. Res. – 2005. – Vol. 58, № 2. – P. 288–296.

59. Rogers E. E., Bonifacio S. L., Glass H. C. et al. Erythropoietin and hypothermia for hypoxic-ischemic encephalopathy // Pediatr. Neurol. – 2014. – Vol. 51, № 5. – P. 657–662.

60. Romero-Sandoval E. A., Horvath R., Landry R. P. et al. Cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation // Mol. Pain. – 2009. – Vol. 5. – P. 25.

61. Ryang Y. M., Fahlenkamp A. V., Rossaint R. et al. Neuroprotective effects of argon in an in vivo model of transient middle cerebral artery occlusion in rats // Crit. Care Med. – 2011. – Vol. 39, № 6. – P. 1448–1453.

62. Sarkar S., Barks J. D., Bapuraj J. R. et al. Does phenobarbital improve the effectiveness of therapeutic hypothermia in infants with hypoxic-ischemic encephalopathy? // J. Perinatol. – 2012. –Vol. 32, № 1. – P. 15–20.

63. Schwer C. I., Lehane C., Guelzow T. et al. Thiopental inhibits global protein synthesis by repression of eukaryotic elongation factor 2 and protects from hypoxic neuronal cell death // PLoS One. – 2013. – Vol. 8, № 10. – P. e77258.

64. Shadid M., Buonocore G., Groenendaal F. et al. Effect of deferoxamine and allopurinol on non-protein-bound iron concentrations in plasma and cortical brain tissue of newborn lambs following hypoxia-ischemia // Neurosci Lett. – 1998. –Vol. 248, № 1. – P. 5–8.

65. Singh D., Kumar P., Majumdar S. et al. Effect of phenobarbital on free radicals in neonates with hypoxic ischemic encephalopathy – a randomized controlled trial // J. Perinat. Med. – 2004. – Vol. 32, № 3. – P. 278–281.

66. Sirén A. L., Fratelli M., Brines M. et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress // Proc. Natl. AcadSci. USA. – 2001. – Vol. 98, № 7. – P. 4044–4049.

67. Song Y., Wei E. Q., Zhang W. P. et al. Minocycline protects PC12 cells from ischemic-like injury and inhibits 5-lipoxygenase activation // Neuroreport. – 2004. – Vol. 15, № 14. – P. 2181–2184.

68. Spandou E., Karkavelas G., Soubasi V. et al. Effect of ketamine on hypoxic-ischemic brain damage in newborn rats // Brain. Res. – 1999. – Vol. 819, № 1–2. – P. 1–7.

69. Tagin M., Shah P. S., Lee K. S. Magnesium for newborns with hypoxic-ischemic encephalopathy: a systematic review and meta-analysis // J. Perinatol. – 2013. – Vol. 33, № 9. – P. 663–669.

70. Thoresen M., Penrice J., Lorek A. et al. Mild hypothermia after severe transient hypoxia-ischemia ameliorates delayed cerebral energy failure in the newborn piglet // Pediatr. Res. – 1995. – Vol. 37, № 5. – P. 667–670.

71. Tian Y., Guo S. X., Li J. R. et al. Topiramate attenuates early brain injury following subarachnoid haemorrhage in rats via duplex protection against inflammation and neuronal cell death // Brain. Res. – 2015. – Vol. 1622. – P. 174–185.

72. Tutak E., Satar M., Zorludemir S. et al. Neuroprotective effects of indomethacin and aminoguanidine in the newborn rats with hypoxic-ischemic cerebral injury // Neurochem. Res. – 2005. – Vol. 30, № 8. – P. 937–942.

73. van den Tweel E. R., van Bel F., Kavelaars A. et al. Long-term neuroprotection with 2-iminobiotin, an inhibitor of neuronal and inducible nitric oxide synthase, after cerebral hypoxia-ischemia in neonatal rats // J. Cereb. Blood Flow Metab. – 2005. – Vol. 25, № 1. – P. 67–74.

74. Vexler Z. S., Wong A., Francisco C. et al. Fructose-1,6-bisphosphate preserves intracellular glutathione and protects cortical neurons against oxidative stress // Brain. Res. – 2003. – Vol. 960, № 1–2. – P. 90–98.

75. Villa P., van Beek J., Larsen A. K. et al. Reduced functional deficits, neuroinflammation, and secondary tissue damage after treatment of stroke by nonerythropoietic erythropoietin derivatives // J. Cereb. Blood Flow Metab. – 2007. – Vol. 27, № 3. – P. 552–563.

76. Wang X., Svedin P., Nie C. et al. N-acetylcysteine reduces lipopolysaccharide-sensitized hypoxic-ischemic brain injury // Ann. Neurol. – 2007. – Vol. 61, № 3. – P. 263–271.

77. Wang Y. J., Pan K. L., Zhao X. L. et al. Therapeutic effects of erythropoietin on hypoxic-ischemic encephalopathy in neonates // Zhongguo Dang Dai ErKeZaZhi. – 2011. – Vol. 13, № 11. – P. 855–858.

78. Williams G. D., Palmer C., Heitjan D. F. et al. Allopurinol preserves cerebral energy metabolism during perinatal hypoxia-ischemia: a 31P NMR study in unanesthetized immature rats // Neurosci. Lett. – 1992. – Vol. 144, № 1–2. – P. 103–106.

79. Xie C., Zhou K., Wang X. et al. Therapeutic benefits of delayed lithium administration in the neonatal rat after cerebral hypoxia-ischemia // PLoS One. – 2014. – Vol. 9, № 9. – P. e107192.

80. Yu T., Kui L. Q., Ming Q. Z. Effect of asphyxia on non-protein-bound iron and lipid peroxidation in newborn infants // Dev. Med. Child Neurol. – 2003. – Vol. 45, № 1. – P. 24–27.

81. Yager J. Y., Thornhill J. A. The effect of age on susceptibility to hypoxic-ischemic brain damage // Neurosci. Biobehav. Rev. – 1997. – Vol. 21. – P. 167–174.

82. Yue X., Mehmet H., Penrice J. et al. Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia-ischaemia // Neuropathol. Appl. Neurobiol. – 1997. – Vol. 23, № 1. – P. 16–25.

83. Zhao L., An R., Yang Y. et al. Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: the role of SIRT1 signaling // J. Pineal. Res. – 2015. – Vol. 59, № 2. – P. 230–239.

84. Zhu C., Kang W., Xu F. et al. Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy // Pediatrics. – 2009. – Vol. 124, № 2. – P. e218–е226.

85. Zhu C., Wang X., Xu F. et al. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia // Cell. Death Differ. – 2005. – Vol. 12, № 2. – P. 162–176.


Для цитирования:


Задворнов А.А., Голомидов А.В., Григорьев Е.В. МЕДИКАМЕНТОЗНАЯ НЕЙРОПРОТЕКЦИЯ У ДОНОШЕННЫХ НОВОРОЖДЕННЫХ С ТЯЖЕЛОЙ ЦЕРЕБРАЛЬНОЙ ИШЕМИЕЙ. Вестник анестезиологии и реаниматологии. 2016;13(3):51-62. https://doi.org/10.21292/2078-5658-2016-13-3-51-62

For citation:


Zadvornov A.A., Golomidov A.V., Grigoriev E.V. DRUG NEUROPROTECTION IN FULL-TERM NEWBORNS WITH SEVERE CEREBRAL ISCHEMIA. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2016;13(3):51-62. (In Russ.) https://doi.org/10.21292/2078-5658-2016-13-3-51-62

Просмотров: 50


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)