Preview

Вестник анестезиологии и реаниматологии

Расширенный поиск

ФИЗИОЛОГИЧЕСКИЕ ПАРАМЕТРЫ ИСКУССТВЕННОГО КРОВООБРАЩЕНИЯ С ТОЧКИ ЗРЕНИЯ ДОКАЗАТЕЛЬНОЙ МЕДИЦИНЫ (часть 2)

https://doi.org/10.21292/2078-5658-2016-13-3-29-42

Полный текст:

Аннотация

В обзоре продолжено рассмотрение аспектов управления основными физиологическими параметрами во время искусственного кровообращения у взрослых пациентов с позиции доказательной медицины, начатое в предыдущем номере журнала. Данная часть посвящена управлению температурой, доставкой кислорода и пульсацией. Делается заключение, что в настоящее время большинство рекомендаций по проведению искусственного кровообращения не имеют серьезной доказательной базы. Для достижения наилучших клинических результатов предложено отслеживать публикуемые данные и соотносить их с собственным опытом с учетом соотношения польза/риск. Показано, что в основе большинства осложнений, связанных с искусственным кровообращением, лежат разные причины, и это диктует необходимость мультидисциплинарного подхода к их предотвращению.

 

Об авторах

И. А. Корнилов
ФГБУ«Новосибирский НИИ патологии кровообращения им. акад. Е. Н. Мешалкина» МЗ РФ, г. Новосибирск
Россия
кандидат медицинских наук, врач анестезиолог-реаниматолог отделения анестезиологии и реанимации


Д. Н. Пономарев
ФГБУ«Новосибирский НИИ патологии кровообращения им. акад. Е. Н. Мешалкина» МЗ РФ, г. Новосибирск
Россия
врач анестезиолог-реаниматолог отделения анестезиологии и реанимации


В. А. Шмырев
ФГБУ«Новосибирский НИИ патологии кровообращения им. акад. Е. Н. Мешалкина» МЗ РФ, г. Новосибирск
Россия
заведующий отделением анестезиологии и реанимации


А. А. Скопец
ГБУЗ «НИИ – краевая клиническая больница № 1 им. проф. С. В. Очаповского», г. Краснодар
Россия
кандидат медицинских наук, заведующий отделением анестезиологии и реанимации № 2.


Ю. С. Синельников
ФГБУ «Федеральный центр сердечно-сосудистой хирургии», г. Пермь
Россия
доктор медицинских наук, заведующий отделением детской кардиохирургии


В. В. Ломиворотов
ФГБУ«Новосибирский НИИ патологии кровообращения им. акад. Е. Н. Мешалкина» МЗ РФ, г. Новосибирск
Россия
доктор медицинских наук, заместитель директора по научной работе


Список литературы

1. Ломиворотов В. В., Шмырев В. А., Ефремов С. М. и др. Нормотермический или гипотермический режимы искусственного кровообращения у пациентов с приобретенными пороками сердца // Общ. реаниматология. – 2013. – Т. 9, № 4. – С. 42–49.

2. Abramov D., Tamariz M., Serrick C. I. et al. The influence of cardiopulmonary bypass flow characteristics on the clinical outcome of 1820 coronary bypass patients // Can. J. Cardiol. – 2003. – Vol. 19. – Р. 237–243.

3. Alam H. B., Rhee P., Honma K. et al. Does the rate of rewarming from profound hypothermic arrest influence the outcome in a swine model of lethal hemorrhage? // J. Trauma. – 2006. – Vol. 60. – Р. 134–146.

4. Alghamdi A. A., Latter D. A. Pulsatile versus nonpulsatile cardiopulmonary bypass flow: an evidence-based approach // J. Card. Surg. – 2006. – Vol. 21. – P. 347–354.

5. Almond C. H., Jones J. C., Snyder H. M. et al. Cooling gradients and brain damage with deep hypothermia // J. Thorac. Cardiovasc. Surg. – 1964. – Vol. 48. – Р. 890–897.

6. Alston R. Systemic oxygen uptake during hypothermic cardiopulmonary bypass // J. Thorac. Cardiovasc. Surg. – 1989. – Vol. 98. – Р. 757–768.

7. Badner N. H., Murkin J. M., Lok P. Differences in pH management and pulsatile/nonpulsatile perfusion during cardiopulmonary bypass do not influence renal function //Anesth. Analg. – 1992. – Vol. 75. – Р. 696–701.

8. Belway D., Tee R., Nathan H. J. et al. Temperature management and monitoring practices during adult cardiac surgery under cardiopulmonary bypass: results of a Canadian national survey // Perfusion. – 2011. – Vol. 26. – Р. 395–400.

9. Bigelow W. G., Lindsay W. K., Greenwood W. F. Hypothermia: its possible role in cardiac surgery-an investigation of factors governing survival in dogs at low body temperatures // Ann. Surg. – 1950. – Vol. 132. – Р. 849–866.

10. Birdi I., Regragui I., Izzat M. B. et al. Influence of normothermic systemic perfusion during coronary artery bypass operations: a randomized prospective study // J. Thorac. Cardiovasc. Surg. – 1997. – Vol. 114. – Р. 475–481.

11. Boldt J., Knothe C., Welters I. et al. Normothermic versus hypothermic bypass: do changes in coagulation differ? // Ann. Thorac. Surg. – 1996. – Vol. 62. – P. 130–135.

12. Boldt J., Knothe C., Zickmann B. et al. Platelet function in cardiac surgery: influence of temperature and aprotinin // Ann. Thorac. Surg. – 1993. – Vol. 55. – Р. 652–658.

13. Boodhwani M., Rubens F. D., Wozney D. et al. Effects of mild hypothermia and rewarming on renal function after coronary artery bypass grafting // Ann. Thorac. Surg. – 2009. – Vol. 87. – Р. 489–495.

14. Boodhwani M., Rubens F. D., Wozny D. et al. Effects of sustained mild hypothermia on neurocognitive function after coronary artery bypass surgery: a randomized, double-blind study // J. Thorac. Cardiovasc. Surg. – 2007. – Vol. 134. – Р. 1443–1452.

15. Borger M. A., Rao V. Temperature management during cardiopulmonary bypass: effect of rewarming rate on cognitive dysfunction // Semin. Cardiothorac. Vasc. Anesth. – 2002. – Vol. 6. – Р. 7–20.

16. Boston U. S., Slater J. M., Orszulak T. A. et al. Hierarchy of regional oxygen delivery during cardiopulmonary bypass // Ann. Thorac. Surg. – 2001. – Vol. 71. – Р. 260–264.

17. Butler B. D., Kurusz M. Gaseous microemboli: a review // Perfusion. – 1990. – Vol. 5. – Р. 81–99.

18. Campos J. M., Paniagua P. Hypothermia during cardiac surgery // Best Pract. Res. Clin. Anaesthesiol. – 2008. – Vol. 22. – Р. 695–709.

19. Cavaliere F., Gennari A., Martinelli L. et al. The relationship between systemic oxygen uptake and delivery during moderate hypothermic cardiopulmonary bypass: critical values and effects of vasodilation by hydralazine // Perfusion. – 1995. – Vol. 10. – Р. 315–321.

20. Christakis G. T., Koch J. P., Deemar K. A. et al. A randomized study of the systemic effects of warm heart surgery // Ann. Thorac. Surg. – 1992. – Vol. 54. – Р. 449–459.

21. Christenson J. T., Maurice J., Simonet F. et al. Normothermic versus hypothermic perfusion during primary coronary artery bypass grafting // Cardiovasc. Surg. – 1995. – Vol. 3. – Р. 519–524.

22. Cook D. J., Oliver W. C. Jr. et al. Vasoactive infusion requirements during normothermic and hypothermic cardiopulmonary bypass // J. Cardiothorac. Vasc. Anesth. – 1994. – Vol. 8. – Р. 34.

23. Cook D. J. Cerebral hyperthermia and cardiac surgery: consequences and prevention // Semin. Thorac. Cardiovasc. Surg. – 2001. – Vol. 13. – P. 176–183.

24. Cook D. J. Changing temperature management for cardiopulmonary bypass // Anesth. Analg. – 1999. – Vol. 88. – Р. 1254–1271.

25. Cook D. J. CON: Temperature regimens and neuroprotection during cardiopulmonary bypass: does rewarming rate matter? // Anesth. Analg. – 2009. – Vol. 109. – Р. 1733–1737.

26. Crowder C. M., Tempelhoff R., Theard M. A. et al. Jugular bulb temperature: comparison with brain surface and core temperatures in neurosurgical patients during mild hypothermia // J. Neurosurg. – 1996. – Vol. 85. – Р. 98–103.

27. Dantzker D. R., Foresman B., Gutierrez G. Oxygen supply and utilization relationships. A reevaluation // Am. Rev. Respir. Dis. – 1991. – Vol. 143. – P. 675–679.

28. Dapper F., Neppl H., Wozniak G. et al. Effects of pulsatile and nonpulsatile perfusion mode during extracorporeal circulation: a comparative clinical study // Thorac. Cardiovasc. Surg. – 1992. – Vol. 40. – Р. 345–351.

29. de Somer F., Mulholland J., Bryan M. et al. O2 delivery and CO2 production during cardiopulmonary bypass as determinants of acute kidney injury: time for a goal-directed perfusion management? // Crit. Care. – 2011. – Vol. 15. – P. R192.

30. Engelman R., Baker R. A., Likosky D. S. et al. The society of thoracic surgeons, the society of cardiovascular anesthesiologists, and the american society of extracorporeal technology: clinical practice guidelines for cardiopulmonary bypass – temperature management during cardiopulmonary bypass // Ann. Thorac. Surg. – 2015. – Vol. 100, № 2. – Р. 748–757.

31. Englelman R. M., Pleet A. B., Rousou J. A. et al. Influence of cardiopulmonary bypass perfusion temperature on neurologic and hematologic function after coronary artery bypass grafting // Ann. Thorac. Surg. – 1999. – Vol. 67. – P. 1547–1555.

32. Fallis W. M. Monitoring bladder temperatures in the OR // AORN J. – 2002. – Vol. 76. – Р. 467–489.

33. Fang W. C., Helm R. E., Krieger K. H. et al. Impact of minimum hematocrit during cardiopulmonary bypass on mortality in patients undergoing coronary artery surgery // Circulation. – 1997. – Vol. 96 (9 suppl.): II-194-II-199.

34. Fox L. S., Blackstone E. H., Kirklin J. W. et al. Relationship of whole body oxygen consumption to perfusion flow rate during hypothermic cardiopulmonary bypass // J. Thorac. Cardiovasc. Surg. – 1982. – Vol. 83. – Р. 239–248.

35. Gaer J. A., Shaw A. D., Wild R. et al. Effect of cardiopulmonary bypass on gastrointestinal perfusion and function // Ann. Thorac. Surg. – 1994. – Vol. 57. – Р. 371–375.

36. Gardeback M., Settergren G., Brodin L. A. et al. Splanchnic blood flow and oxygen uptake during cardiopulmonary bypass // J. Cardiothorac. Vasc. Anesth. – 2002. – Vol. 16. – Р. 308–315.

37. Geissler H. J., Allen S. J., Mehlhorn U. et al. Cooling gradients and formation of gaseous microemboli with cardiopulmo- nary bypass: an echocardiographic study // Ann. Thorac. Surg. – 1997. – Vol. 64. – Р. 100–104.

38. Goto M., Kudoh K., Minami S. et al. The renin-aldosterone system and hematologic changes during pulsatile and nonpulsatile cardiopulmonary bypass // Artif. Organs. – 1993. – Vol. 17. – Р. 318–322.

39. Gourlay T., Taylor K. M. Pulsatile flow and membrane oxygenators // Perfusion. – 1994. – Vol. 9. – Р. 189–196.

40. Gozal Y., Glantz L., Luria M. H. et al. Normothermic continuous blood cardioplegia improves electrophysiologic recovery after open heart surgery // Anesthesiology. – 1996. – Vol. 84. – Р. 1298–1306.

41. Grigore A. M., Grocott H. P., Mathew J. P. et al. The rewarming rate and increased peak temperature alter neurocognitive outcome after cardiac surgery // Anesth. Analg. – 2002. – Vol. 94. – Р. 4–10.

42. Grigore A. M., Murray C. F., Ramakrishna H. et al. A core review of temperature regimens and neuroprotection during cardiopulmonary bypass: does rewarming rate matter? // Anesth. Analg. – 2009. – Vol. 109. – Р. 1741–1751.

43. Grocott H. P., Mackensen G. B., Grigore A. M. et al. Neurologic Outcome Research Group (NORG); Cardiothoracic Anes- thesiology Research Endeavors (CARE) Investigators’ of the Duke Heart Center. Postoperative hyperthermia is associated with cognitive dysfunction after coronary artery bypass graft surgery // Stroke. – 2002. – Vol. 33. – Р. 537–541.

44. Grocott H. P. PRO: Temperature regimens and neuro-protection during cardiopulmonary bypass: does rewarming rate matter? // Anesth. Analg. – 2009. – Vol. 109. – Р. 1738–1740.

45. Groom R. C., Rassias A. J., Cormack J. E. et al. Northern New England Cardiovascular Disease Study Group. Highest core temperature during cardiopulmonary bypass and rate of mediastinitis // Perfusion. – 2004. – Vol. 19. – Р. 119–125.

46. Habib R. H., Zacharias A., Schwann T. A. et al. Adverse effects of low hematocrit during cardiopulmonary bypass in the adult: should current practice be changed? // J. Thorac. Cardiovasc. Surg. – 2003. – Vol. 125. – Р. 1438–1450.

47. Haisjackl M., Birnbaum J., Redlin M. et al. Splanchnic oxygen transport and lactate metabolism during normothermic cardiopulmonary bypass in humans // Anesth. Analg. – 1998. – Vol. 86. – Р. 22–27.

48. Hamulu A., Atay Y., Yadi T. et al. Effects of flow types in cardiopulmonary bypass on gastric intramucosal pH // Perfusion. – 1998. – Vol. 13. – Р. 129–135.

49. Henze T., Stephan H., Sonntag H. Cerebral dysfunction following extracorporeal circulation for aortocoronary bypass surgery: no differences in neuropsychological outcome after pulsatile versus nonpulsatile flow // Thorac. Cardiovasc. Surg. – 1990. – Vol. 38. – Р. 65–68.

50. Heyman S. N., Khamaisi M., Rosen S. et al. Renal parenchimal hypoxia, hypoxia response and the progression of chronic kidney disease // Am. J. Nephrol. – 2008. – Vol. 28. – Р. 998–1006.

51. Hickey R. F., Hoar P. F. Whole-body oxygen consumption during low-flow hypothermic cardiopulmonary bypass // J. Thorac. Cardiovasc. Surg. – 1983. – Vol. 86. – Р. 903–906.

52. Ho K. M., Tan J. A. Benefits and risks of maintaining normothermia during cardiopulmonary bypass in adult cardiac surgery: A systematic review // Cardiovasc. Ther. – 2011. – Vol. 29. – Р. 260–279.

53. Insler S. R., O’Connor M. S., Leventhal M. J. et al. Association between postoperative hypothermia and adverse outcome after coronary artery bypass surgery // Ann. Thorac. Surg. – 2000. – Vol. 70. – Р. 175–181.

54. Ji B., Undar A. An evaluation of the benefits of pulsatile versus nonpulsatile perfusion during cardiopulmonary bypass procedures in pediatric and adult cardiac patients // ASAIO J. – 2006. – Vol. 52. – Р. 357–361.

55. Joachimsson P. O., Sjoberg F., Forsman M. et al. Adverse effects of hyperoxia during cardiopulmonary bypass // J. Thorac. Cardiovasc. Surg. – 1996. – Vol. 112. – Р. 812–819.

56. Johnson R. I., Fox M. A., Grayson A. et al. Should we rely on nasopharyngeal temperature during cardiopulmonary bypass? // Perfusion. – 2002. – Vol. 17. – Р. 145–151.

57. Joshi B., Brady K., Lee J. et al. Impaired autoregulation of cerebral blood flow during rewarming from hypothermic cardiopulmonarybypass and its potential association with stroke // Anesth. Analg. – 2010. – Vol. 110. – Р. 321–328.

58. Kaukuntla H., Harrington D., Bilkoo I. et al. Temperature monitoring during cardiopulmonary bypass – do we undercool or overheat the brain? // Eur. J. Cardiothorac. Surg. – 2004. – Vol. 26. – Р. 580–585.

59. Kaukuntla H., Walker A., Harrington D. et al. Differential brain and body temperature during cardiopulmonary bypass – a randomised clinical study // Eur. J. Cardiothoracic. Surg. – 2004. – Vol. 26. – Р. 571–579.

60. Kawahara F., Kadoi Y., Saitp S. et al. Slow rewarming improves jugular venous oxygen saturation during rewarming // Acta Anaesthesiol. Scand. – 2003. – Vol. 47. – Р. 419–424.

61. Kocakulak M., Akin G., Kucukaksu S. et al. Pulsatile flow improves renal function in high-risk cardiac operations // Blood. Purif. – 2005. – Vol. 23. – P. 263–267.

62. Komatsu T., Shibutani K., Okamoto K. et al. Critical levels of oxygen delivery after cardiopulmonary bypass // Crit. Care Med. – 1987. – Vol. 15. – Р. 194–197.

63. Lehot J. J., Villard J., Piriz H. et al. Hemodynamic and hormonal responses to hypothermic and normothermic cardiopulmonary bypass // J. Cardiothorac. Vasc. Anesth. – 1992. – Vol. 6. – Р. 132–139.

64. Liam B. L., Plochl W., Cook D. J. et al. Hemodilution and whole body oxygen balance during normothermic cardiopulmonary bypass in dogs // J. Thorac. Cardiovasc. Surg. – 1998. – Vol. 115. – Р. 1203–1208.

65. Lichtenstein S. V., Ashe K. A., el Dalati H. et al. Warm heart surgery // J. Thorac. Cardiovasc. Surg. – 1991. – Vol. 101. – Р. 269–274.

66. Lindholm L., Bengtsson A., Hansdottir V. et al. Regional oxygenation and systemic inflammatory response during cardiopulmonary bypass: influence of temperature and blood flow variations // J. Cardiothorac. Vasc. Anesth. – 2003. – Vol. 17. – Р. 182–187.

67. Lomivorotov V. V., Shmirev V. A., Efremov S. E. et al. Hypothermic versus normothermic cardiopulmonary bypass in patients with valvular heart disease // J. Cardiothor. Vascular Anesthesia. – 2014. – Vol. 28, № 2. – Р. 295–300.

68. Martin T. D., Craver J. M., Gott J. P. et al. Prospective, randomized trial of retrograde warm blood cardioplegia: myocardial benefit and neurological threat // Ann. Thorac. Surg. – 1994. – Vol. 57. – Р. 298–304.

69. Mathie R. T., Ohri S. K., Batten J. J. et al. Hepatic blood flow during cardiopulmonary bypass operations: the effect of temperature and pulsatility // J. Thorac. Cardiovasc. Surg. – 1997. – Vol. 114. – Р. 292–293.

70. Mavroudis C. To pulse or not to pulse // Ann. Thorac. Surg. – 1978. – Vol. 25. – Р. 259–262.

71. Mekontso-Dessap A., Castelain V., Anguel N. et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients // Intens. Care Med. – 2002. – Vol. 28. – Р. 272–277.

72. Mora-Mangano C. T., Chow J. L., Kanevsky M. Cardiopulmonary bypass and the anesthesiologist. In: Kaplan J. A., Reich D. L., Lake C. L., Konstadt S. N. eds. Kaplan’s cardiac anesthesia, 5th ed. Philadelphia: Elsevier/Saunders, 2006. – Р. 853–888.

73. Murkin J. M., Martzke J. S., Buchan A. M. et al. A randomized study of the influence of perfusion technique and pH management strategy in 316 patients undergoing coronary artery bypass surgery. I. Mortality and cardiovascular morbidity // J. Thorac. Cardiovasc. Surg. – 1995. – Vol. 110. – Р. 340–348.

74. Murkin J. M., Martzke J. S., Buchan A. M. et al. A randomized study of the influence of perfusion technique and pH management strategy in 316 patients undergoing coronary artery bypass surgery. II. Neurologic and cognitive outcomes // J. Thorac. Cardiovasc. Surg. – 1995. – Vol. 110. – P. 349–362.

75. Murphy G. S., Hessel E. A. II, Groom R. C. Optimal perfusion during cardiopulmonary bypass: an evidence-based approach // Anesth. Analg. – 2009. – Vol. 108. – Р. 1394–1417.

76. Nathan H. J., Parlea L., Dupuis J. Y. et al. Safety of deliberate intraoperative and postoperative hypothermia for patients undergoing coronary artery surgery: a randomized trial // J. Thorac. Cardiovasc. Surg. – 2004. – Vol. 127. – Р. 1270–1275.

77. Nathan H. J., Rodriguez R., Wozny D. et al. Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass: five year follow-up of a randomized trial // J. Thorac. Cardiovasc. Surg. – 2007. – Vol. 133. – Р. 1206–1211.

78. Nathan H. J., Wells G. A., Munson J. L. et al. Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass: a randomized trial // Circulation. – 2001. – P. 85–91.

79. Newland R. F., Tully P. J., Baker R. A. Hyperthermic perfusion during cardiopulmonary bypass and postoperative temperature are independent predictors of acute kidney injury following cardiac surgery // Perfusion. – 2013. – Vol. 28. – Р. 223–231.

80. Nussmeier N. A., Cheng W., Marino M. et al. Temperature during cardiopulmonary bypass: the discrepancies between monitored sites // Anesth. Analg. – 2006. – Vol. 103. – Р. 1373–1379.

81. Nussmeier N. A. Management of temperature during and after cardiac surgery // Tex. Heart. Inst. J. – 2005. – Vol. 32. – Р. 472–426.

82. Parolari A., Alamanni F., Gherli T. et al. Cardiopulmonary bypass and oxygen consumption: oxygen delivery and hemodynamics // Ann. Thorac. Surg. – 1999. – Vol. 67. – Р. 1320–1327.

83. Pinsky M. R. Beyond global oxygen supply-demand relations: in search of measures of dysoxia // Intens. Care Med. – 1994. – Vol. 20. – Р. 1–3.

84. Rajek A., Lenhardt R., Sessler D. I. et al. Tissue heat content and distribution during and after cardiopulmonary bypass at 31 degrees C and 27 degrees C // Anesthesiology. – 1998. – Vol. 88. – Р. 1511–1518.

85. Randall H. M. Jr., Cohen J. J. Anaerobic CO2 production by dog kidney in vitro // Am. J. Physiol. – 1966. – Vol. 211. – Р. 493–505.

86. Ranucci M., Romitti F., Isgro G. et al. Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations // Ann. Thorac. Surg. – 2005. – Vol. 80. – Р. 2213–2220.

87. Rasmussen B. S., Sollid J., Knudsen L. et al. The release of systemic inflammatory mediators is independent of cardiopulmonary bypass temperature // J. Cardiothorac. Vasc. Anesth. – 2007. – Vol. 21. – Р. 191–196.

88. Ratcliffe P. J., Endre Z. H., Tange J. D. et al. Ischaemic acute renal failure: why does it occur? // Nephron. – 1989. – Vol. 52. – Р. 1–5.

89. Rees K., Beranek-Stanley M., Burke M. et al. Hypothermia to reduce neurologic damage following coronary artery bypass surgery // Cochrane Database Syst. Rev. – 2006. – CD002138.

90. Regragui I. A., Izzat M. B., Birdi I. et al. Cardiopulmonary bypass perfusion temperature does not influence perioperative renal function // Ann. Thorac. Surg. – 1995. – Vol. 60. – Р. 160–164.

91. Rosenberger C., Rosen S., Heyman S. N. Renal parenchymal oxygenation and hypoxia adaptation in acute kidney injury // Clin. Exp. Pharmacol. Physiol. – 2006. – Vol. 33. – Р. 980–988.

92. Rubens F. D., Nathan H. Lessons learned on the path to a healthier brain: dispelling the myths and challenging thehypotheses // Perfusion. – 2007. – Vol. 22. – Р. 153–160.

93. Sahu B., Chauhan S., Kiran U. et al. Neurocognitive function in patients undergoing coronary artery bypass graft surgery with cardiopulmonary bypass: the effect of two different rewarming strategies // J. Cardiothoracic. Vasc. Anesth. – 2009. – Vol. 23. – Р. 14–21.

94. Salah M., Sutton R., Tsarovsky G. et al. Temperature inaccuracies during cardiopulmonary bypass // J. Extra Corpor. Technol. – 2005. – Vol. 37. – Р. 38–42.

95. Saleh M., Barr T. M. The impact of slow rewarming on inotropy, tissue metabolism, and «after drop» of body temperature in pediatric patients // J. Extra Corpor. Technol. – 2005. – Vol. 37. – Р. 173–179.

96. Scheffer T., Sanders B. The neurologic sequelae of cardiopulmonary bypass-induced cerebral hyperthermia and cerebroprotective strategies // J. Extra Corpor. Technol. – 2003. – Vol. 35. – Р. 317–321.

97. Schmid F. X., Pjillip A., Foltan M. et al. Adequacy of perfusion during hypothermia: regional distribution of cardiopulmonary bypass flow, mixed venous and regional venous oxygen saturation – hypothermia and distribution of flow and oxygen // Thorac. Cardiovasc. Surg. – 2003. – Vol. 51. – Р. 306–311.

98. Sezai A., Shiono M., Nakata K. et al. Effects of pulsatile CPB on interleukin-8 and endothelin-1 levels // Artif. Organs. – 2005. – Vol. 29. – Р. 708–713.

99. Shann K. G., Likosky D. S., Murkin J. M. et al. An evidence-based review of the practice of cardiopulmonary bypass in adults: a focus on neurologic injury, glycemic control, hemodilution, and the inflammatory response // J. Thorac. Cardiovasc. Surg. – 2006. – Vol. 132. – Р. 283–290.

100. Shibutani K., Komatsu T., Kubal K. et al. Critical level of oxygen delivery in anesthetized man // Crit. Care Med. – 1983. – Vol. 11. – Р. 640–643.

101. Sicsic J. C., Duranteau J., Corbineau H. et al. Gastric mucosal oxygen delivery decreases during cardiopulmonary bypass despite constant systemic oxygen delivery // Anesth. Analg. – 1998. – Vol. 86. – Р. 455–460.

102. Song Z., Wang C., Stammers A. H. Clinical comparison of pulsatile and nonpulsatile perfusion during cardiopulmonary bypass // J. Extra Corpor. Technol. – 1997. – Vol. 29. – Р. 170–175.

103. Steltzer H., Hiesmayr M., Mayer N. et al. The relationship between oxygen delivery and uptake in the critically ill: is there a critical optimal therapeutic value? A meta-analysis // Anaesthesia. – 1994. – Vol. 49. – Р. 229–236.

104. Stensrud P. E., Nuttall G. A., de Castro M. A. et al. A prospective, randomized study of cardiopulmonary bypass temperature and blood transfusion // Ann. Thorac. Surg. – 1999. – Vol. 67. – Р. 711–715.

105. Suttner S., Piper S. N., Kumle B. et al. Influence of allogeneic red blood cell transfusion compared with 100% oxygen ventilation on systemic oxygen transport and skeletal muscle oxygen tension after cardiac surgery // Anesth. Analg. – 2004. – Vol. 99. – Р. 2–11.

106. Swaminathan M., East C., Phillips-Bute B. et al. Report of a substudy on warm versus cold cardiopulmonary bypass: changes in creatinine clearance // Ann. Thorac. Surg. – 2001. – Vol. 72. – Р. 1603–1609.

107. Swaminathan M., Phillips-Bute B. G., Conlon P. J. et al. The association of lowest hematocrit during cardiopulmonary bypass with acute renal injury after coronary artery bypass surgery // Ann. Thorac. Surg. – 2003. – Vol. 76. – Р. 784–792.

108. Takahara Y., Sudo Y., Nakano H. et al. Strategy for reduction of stroke incidence in coronary bypass patients with cerebral lesions. Early results and midterm morbidity using pulsatile perfusion // Jpn. J. Thorac. Cardiovasc. Surg. – 2000. – Vol. 48. – Р. 551–556.

109. Tao W., Zwischenberger J. B., Nguyen T. T. et al. Gut mucosal ischemia during normothermic cardiopulmonary bypass results from blood flow redistribution and increased oxygen demand // J. Thorac. Cardiovasc. Surg. – 1995. – Vol. 110. – Р. 819–828.

110. Taylor K. M., Bain W. H., Davidson K. G. et al. Comparative clinical study and pulsatile and non-pulsatile perfusion in 350 consecutive patients // Thorax. – 1982. – Vol. 37. – Р. 324–330.

111. The Warm Heart Investigators. Randomized trial of normothermic versus hypothermic coronary bypass surgery // Lancet. – 1994. – Vol. 343. – Р. 559–563.

112. Tindall M. J., Peletier M. A., Severens N. M. et al. Understanding post-operative temperature drop in cardiac surgery: a mathematical model // Math. Med. Biol. – 2008. – Vol. 25. – Р. 323–335.

113. Tonz M., Mihaljevic T., von Segesser L. K. et al. Normothermia versus hypothermia during cardiopulmonary bypass: a randomized, controlled trial // Ann. Thorac. Surg. – 1995. – Vol. 59. – Р. 137–143.

114. Undar A., Lodge A. J., Daggett C. W. et al. The type of aortic cannula and membrane oxygenator affect the pulsatile waveform morphology produced by a neonate-infant cardiopulmonary bypass system in vivo // Artif. Organs. – 1998. – Vol. 22. – Р. 681–686.

115. Undar A., Masai T., Frazier O. H. et al. Pulsatile and nonpulsatile flows can be quantified in terms of energy equivalent pressure during cardiopulmonary bypass for direct comparisons // ASAIO J. – 1999. – Vol. 45. – Р. 610–614.

116. Undar A., Rosenberg G., Myers J. L. Major factors in the controversy of pulsatile versus nonpulsatile flow during acute and chronic support // ASAIO J. – 2005. – Vol. 51. – Р. 173–175.

117. Undar A. Pulsatile versus nonpulsatile cardiopulmonary bypass procedures in neonates and infants: from bench to clinical practice // ASAIO J. – 2005. – Vol. 51. – Р. 6–10.

118. von Heymann C., Sander M., Foer A. et al. The impact of a hematocrit of 20% during normothermic cardiopulmonary bypass for elective low risk coronary artery bypass graft surgery on oxygen delivery and clinical outcomes-a randomized controlled study // Crit. Care. – 2006. – Vol. 10. – Р. R58.

119. Welch W. J., Baumgartl H., Lubbers D. et al. Nephron PO2 adrenal oxygen usage in the hypertensive rat kidney // Kidney Int. – 1991. – Vol. 40. – Р. 632–642.

120. Zamparelli R., de Paulis S., Martinelli L. et al. Pulsatile normothermic cardiopulmonary bypass and plasma catecholamine levels // Perfusion. – 2000. – Vol. 15. – Р. 217–223.


Для цитирования:


Корнилов И.А., Пономарев Д.Н., Шмырев В.А., Скопец А.А., Синельников Ю.С., Ломиворотов В.В. ФИЗИОЛОГИЧЕСКИЕ ПАРАМЕТРЫ ИСКУССТВЕННОГО КРОВООБРАЩЕНИЯ С ТОЧКИ ЗРЕНИЯ ДОКАЗАТЕЛЬНОЙ МЕДИЦИНЫ (часть 2). Вестник анестезиологии и реаниматологии. 2016;13(3):29-42. https://doi.org/10.21292/2078-5658-2016-13-3-29-42

For citation:


Kornilov I.A., Ponomarev D.N., Shmyrev V.A., Skopets A.A., Sinelnikov Y.S., Lomivorotov V.V. PHYSIOLOGICAL PARAMETERS OF ARTIFICIAL BLOOD CIRCULATION FROM THE POSITION OF THE EVIDENCE BASED MEDICINE (part 2). Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2016;13(3):29-42. (In Russ.) https://doi.org/10.21292/2078-5658-2016-13-3-29-42

Просмотров: 63


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)