Preview

Messenger of ANESTHESIOLOGY AND RESUSCITATION

Advanced search

PHYSIOLOGICAL PARAMETERS OF ARTIFICIAL BLOOD CIRCULATION FROM THE POSITION OF THE EVIDENCE BASED MEDICINE. PART I

https://doi.org/10.21292/2078-5658-2016-13-2-57-69

Abstract

Abstract. Artificial blood circulation is a main supporting technique of cardiac surgery. This review is devoted to the management aspects of main physiological parameters during artificial blood circulation in the adult patients from the position of the evidence based medicine.

 

About the Authors

I. A. Kornilov
E. N. Meshalkin Research Institute of Blood Circulation Pathology, Novosibirsk
Russian Federation


D. N. Ponomarev
E. N. Meshalkin Research Institute of Blood Circulation Pathology, Novosibirsk
Russian Federation


V. A. Shmyrev
E. N. Meshalkin Research Institute of Blood Circulation Pathology, Novosibirsk
Russian Federation


A. A. Skopets
Research Institute – S. V. Ochapovskaya Regional Clinical Hospital no. 1, Krasnodar
Russian Federation


Yu. S. Sinelnikov
Federal Centre of Cardio-Vascular Surgery, Perm
Russian Federation


V. V. Lomivorotov
E. N. Meshalkin Research Institute of Blood Circulation Pathology, Novosibirsk
Russian Federation


References

1. Jewell A.E., Akowuah E.F., Suvarna S.K. et al. A prospective randomised comparison of cardiotomy suction and cell saver for recycling shed blood during cardiac surgery. Eur. J. Cardiothorac. Surg., 2003, vol. 23, pp. 633-636.

2. Akselrod B.A. Regional oxygenation in the safety provision of cardiac surgery. Patologiya Krovoobrascheniya i Kardiokhirurgiya, 2014, vol. 18, no. 3, pp. 53-58. (In Russ.)

3. Johnson R.G., Thurer R.L., Kruskall M.S. et al. Comparison of two transfusion strategies after elective operations for myocardial revascularization. J. Thorac. Cardiovasc. Surg., 1992, vol. 104, pp. 307-314.

4. Bartels C., Gerdes A., Babin-Ebell J. et al. Working Group on Extracorporeal Circulation and Mechanical Ventricular Assist Devices of the German Society for Thoracic and Cardiovascular Surgery. Cardiopulmonary bypass: evidence or experience based? J. Thorac. Cardiovasc. Surg., 2002, vol. 124, pp. 20-27.

5. Joshi B., Ono M., Brown C. et al. Predicting the limits of cerebral autoregulation during cardiopulmonary bypass. Anesth. Analg., 2012, vol. 114, pp. 503-510.

6. Bastien O., Piriou V., Aouifi A. et al. Relative importance of flow versus pressure in splanchnic perfusion during cardiopulmonary bypass in rabbits. Anesthesiology, 2000, vol. 92, pp. 457-464.

7. Karkouti K., Beattie W.S., Wijeysundera D.N. et al. Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. J. Thorac. Cardiovasc. Surg., 2005, vol. 129, pp. 391-400.

8. Bennett-Guerrero E., Zhao Y., O’Brien S.M. et al. Variation in use of blood transfusion in coronary artery bypass graft surgery. JAMA, 2010, vol. 304, pp. 1568-1575.

9. Karkouti K., Djaiani G., Borger M.A. et al. Low hematocrit during cardiopulmonary bypass is associated with increased risk of perioperative stroke in cardiac surgery. Ann. Thorac. Surg., 2005, vol. 80, pp. 1381-1387.

10. Blumberg N., Heal J. Transfusion and recipient immune function. Arch. Pathol. Lab. Med., 1989, vol. 113, pp. 246-253.

11. Karkouti K., Wijeysundera D.N., Yau T.M. et al. Influence of erythrocyte transfusion on the risk of acute kidney injury after cardiac surgery differs in anemic and nonanemic patients. Anesthesiology, 2011, vol. 115, pp. 523-530.

12. Boston U.S., Slater J.M., Orszulak T.A. et al. Hierarchy of regional oxygen delivery during cardiopulmonary bypass. Ann. Thorac. Surg., 2001, vol. 71, pp. 260-264.

13. Kincaid E.H., Jones T.J., Stump D.A. et al. Processing scavenged blood with a cell saver reduces cerebral lipid microembolization. Ann. Thorac. Surg., 2000, vol. 70, pp. 1296-1300.

14. Bracey A.W., Radovancevic R., Riggs S.A. et al. Lowering the hemoglobin threshold for transfusion in coronary artery bypass procedures: effect on patient outcome. Transfusion, 1999, vol. 39, pp. 1070-1077.

15. Koch C.G., Li L., Duncan A.I. et al. Morbidity and mortality risk associated with red blood cell and blood-component transfusion in isolated coronary artery bypass grafting. Crit. Care Med., 2006, vol. 34, pp. 1608-1616.

16. Brauer S.D., Applegate R.L.II, Jameson J.J. et al. Association of plasma dilution with cardiopulmonary bypass-associated bleeding and morbidity. J. Cardiothorac. Vasc. Anesth., 2013, vol. 27, pp. 845-852.

17. Koch C.G., Li L., Duncan A.I. et al. Transfusion in coronary artery bypass grafting is associated with reduced long-term survival. Ann. Thorac. Surg., 2006, vol. 81, pp. 1650-1657.

18. Burman J.F., Westlake A.S., Davidson S.J. et al. Study of five cell salvage machines in coronary artery surgery. Transfus. Med., 2002, vol. 12, pp. 173-179.

19. Kolkka R., Hilberman M. Neurologic dysfunction following cardiac operation with low-flow, low-pressure cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg., 1980, vol. 79, pp. 432-437.

20. Carrier M., Denault A., Lavoie J., Perrault L.P. Randomized controlled trial of pericardial blood processing with a cellsaving device on neurologic markers in elderly patients undergoing coronary artery bypass graft surgery. Ann. Thorac. Surg., 2006, vol. 82, pp. 51-55.

21. Kuduvalli M., Oo A.Y., Newall N. et al. Effect of perioperative red blood cell transfusion on 30-day and 1-year mortality following coronary artery bypass surgery. Eur. J. Cardiothorac. Surg., 2005, vol. 27, pp. 592-598.

22. Carson J.L., Carless P.A., Hébert P.C. Outcomes using lower vs higher hemoglobin thresholds for red blood cell transfusion. JAMA, 2013, vol. 309, pp. 83-84.

23. Larsen F.S., Olsen K.S., Hansen B.A. et al. Transcranial Doppler is valid for determination of the lower limit of cerebral blood flow autoregulation. Stroke, 1994, vol. 25, pp. 1985-1988.

24. Carson J.L., Carless P.A., Hebert P.C. Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. Cochrane Database Syst. Rev., 2012, 4:CD002042.

25. Lassen N.A. Cerebral blood flow and oxygen consumption in man. Physiol. Rev., 1959, vol. 39, pp. 183-238.

26. Carson J.L., Grossman B.J., Kleinman S. et al. Red blood cell transfusion: a clinical practice guideline from the AABB*. Ann. Intern. Med., 2012, vol. 157, pp. 49-58.

27. Leal-Noval S.R., Jara-Lopez I., Garcia-Garmendia J.L. et al. Influence of erythrocyte concentrate storage time on postsurgical morbidity in cardiac surgical patients. Anesthesiology, 2003, vol. 98, pp. 815-822.

28. Carson J.L., Noveck H., Berlin J.A. et al. Mortality and morbidity in patients with very low postoperative Hb levels who decline blood transfusion. Transfusion, 2002, vol. 42, pp. 812-818.

29. Lee L.W.Jr., Brady M.P., Rowe J.M. et al. Effects of extracorporeal circulation upon behavior, personality, and brain function. II. Hemodynamic, metabolic, and psychometric correlations. Ann. Surg., 1971, vol. 173, pp. 1013-1023.

30. Cohn L.H., Fosberg A.M., Anderson W.P. et al. The effects of phlebotomy, hemo-dilution, and autologous transfusion on systemic oxygenation and whole blood utilization in open heart surgery. Chest, 1975, vol. 68, pp. 283-287.

31. Lilleaasen P. Moderate and extreme haemodilution in open heart surgery. Scand. J. Cardiovasc. Surg., 1977, vol. 11, pp. 97-103.

32. Cook D.J., Oliver W.C.Jr, Orszulak T.A. et al. Cardiopulmonary bypass temperature, hematocrit, and cerebral oxygen delivery in humans. Ann. Thorac. Surg., 1995, vol. 60, pp. 1671-1677.

33. Lowenstein E. Blood conservation in open heart surgery. Cleve Clin. Q., 1981, vol. 48, pp. 112-125.

34. Cook D.J., Proper J.A., Orszulak T.A. et al. Effect of pump flow rate on cerebral blood flow during hypothermic cardiopulmonary bypass in adults. J. Cardiothorac. Vasc. Anesth., 1997, vol. 11, pp. 415-419.

35. Mackay J.H., Feerick A.E., Woodson L.C. et al. Increasing organ blood flow during cardiopulmonary bypass in pigs: comparison of dopamine and perfusion pressure. Crit. Care Med., 1995, vol. 23, pp. 1090-1098.

36. Cosgrove D.M., Thurere R.L., Lytle B.W. et al. Determinants of blood utilization during myocardial revascularization. Ann. Thorac. Surg., 1985, vol. 40, pp. 380-384.

37. Mathew J.P., Mackensen G.B., Phillips-Bute B. et al. Effects of extreme hemodilution during cardiac surgery on cognitive function in the elderly. Anesthesiology, 2007, vol. 107, pp. 577-584.

38. Croughwell N., Lyth M., Quill T.J. et al. Diabetic patients have abnormal cerebral autoregulation during cardiopulmonary bypass. Circulation, 1990, vol. 82, pp. 407-412.

39. Murkin J.M., Adams S.J., Novick R.J. et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth. Analg., 2007, vol. 104, pp. 51-58.

40. Czosnyka M., Brady K., Reinhard M. et al. Monitoring of cerebrovascular autoregulation: facts, myths, and missing links. Neurocrit. Care, 2009, vol. 10, pp. 373-386.

41. Murkin J.M., Farrar J.K., Tweed W.A. et al. Cerebral autoregulation and flow/metabolism coupling during cardiopulmonary bypass: the influence of PaCO2. Anesth. Analg., 1987, vol. 66, pp. 825-832.

42. DeFoe G.R., Ross C.S., Olmstead E.M. et al. Lowest hematocrit on bypass and adverse outcomes associated with coronary artery bypass grafting. Ann. Thorac. Surg., 2001, vol. 71, pp. 769-776.

43. Murkin J.M. Cerebral oximetry: monitoring the brain as the index organ. Anesthesiology, 2011, vol. 114, pp. 12-13.

44. Djaiani G., Fedorko L., Borger M.A. et al. Continuous-flow cell saver reduces cognitive decline in elderly patients after coronary bypass surgery. Circulation, 2007, vol. 116, pp. 1888-1895.

45. Murphy G.J, Pike K., Rogers C.A. et al. TITRe2 Investigators Liberal or restrictive transfusion after cardiac surgery. N. Engl. J. Med., 2015, vol. 372, no. 11, pp. 997-1008.

46. Drummond J.C. The lower limit of autoregulation: time to revise our thinking? Anesthesiology, 1997, vol. 86, pp. 1431-1432.

47. Murphy G.J., Reeves B.C., Rogers C.A. et al. Increased mortality, postoperative morbidity, and cost after red blood cell transfusion in patients having cardiac surgery. Circulation, 2007, vol. 116, pp. 2544-2552.

48. Ellis R.J., Wigniewski A., Potts R. et al. Reduction of flow rate and arterial pressure at moderate hypothermia does not result in cerebral dysfunction. J. Thorac. Cardiovasc. Surg., 1980, vol. 79, pp. 173– 180.

49. Murphy G.J., Rizvi S.I., Battaglia F. et al. A pilot randomized controlled trial of the effect of transfusion-threshold reduction on transfusion rates and morbidity after cardiac surgery. Transfus Altern. Transfus. Med., 2007, vol. 9, suppl. 1. pp. 41-42.

50. Engoren M.C., Habib R.H., Zacharias A. et al. Effect of blood transfusion on long-term survival after cardiac operation. Ann. Thorac. Surg., 2002, vol. 74, pp. 1180-1186.

51. Murphy G.S., Hessel E.A.II, Groom R.C. Optimal perfusion during cardiopulmonary bypass: an evidence-based approach. Anesth. Analg., 2009, vol. 108, pp. 1394-1417.

52. Fang C.W., Helm R.E., Krieger K.H. et al. Impact of minimum hematocrit during cardiopulmonary bypass on mortality in patients undergoing coronary artery surgery. Circulation, 1997, vol. 96, suppl. 9, pp. II194 –II199.

53. Murphy M.F., Murphy G.J., Gill R. et al. National comparative audit of blood transfusion: 2011 audit of blood transfusion in adult cardiac surgery. Birming-ham, United Kingdom: National Health Service, 2013.

54. Farmer S.L., Towler S.C., Leahy M.F. et al. Drivers for change: Western Australia Patient Blood Management Program (WA PBMP), World Health Assembly (WHA) and Advisory Committee on Blood Safety and Availability (ACBSA). Best. Pract. Res. Clin. Anaesthesiol., 2013, vol. 27, pp. 43-58.

55. Murphy P.J., Connery C., Hicks G.L. et al. Homologous blood transfusion as a risk factor for postoperative infection after coronary artery bypass graft operations. J. Thorac. Cardiovasc. Surg., 1992, vol. 104, pp. 1092-1099.

56. Ferraris V.A., Brown J.R., Despotis G.J. et al. 2011 Update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines. Ann. Thorac. Surg., 2011, vol. 91, pp. 944-982.

57. Napolitano L.M., Kurek S., Luchette F.A. et al. Clinical practice guideline: red blood cell transfusion in adult trauma and critical care. Crit. Care Med., 2009, vol. 37, pp. 3124-3157.

58. Fischer G.W., Lin H.M., Krol M. et al. Noninvasive cerebral oxygenation may predict outcome in patients undergoing aortic arch surgery. J. Thorac. Cardiovasc. Surg., 2010, vol. 141, pp. 815-821.

59. Newman M.F., Kramer D., Croughwell N.D. et al. Differential age effects of mean arterial pressure and re-warming on cognitive dysfunction after cardiac surgery. Anesth. Analg., 1995, vol. 81, pp. 236-242.

60. Fish K.J., Helms K.N., Sernquist F.H. et al. A prospective, randomized study of the effects of prostacyclin on neuropsychologic dysfunction after coronary artery operation. J. Thorac. Cardiovasc. Surg., 1987, vol. 93, pp. 609-615.

61. O’Dwyer C., Woodson L.C., Conroy B.P. et al. Regional perfusion abnormalities with phenylepherine during normothermic bypass. Ann. Thorac. Surg., 1997, vol. 63, pp. 728-735.

62. Fisher U.M., Weissenberger W.K., Warters R.D. et al. Impact of cardiopulmonary bypass management on postcardiac surgery renal function. Perfusion, 2002, vol. 17, pp. 401-406.

63. Olsen K.S., Svenden L.B., Larsen F.S. et al. Effect of labatolol on cerebral blood flow, oxygen metabolism, and autoregulation in healthy humans. Br. J. Anaesth., 1995, vol. 75, pp. 51-54.

64. Fox L.S., Blackstone E.H., Kirklin J.W. et al. Relationship of brain blood flow and oxygen consumption to perfusion flow rate during profoundly hypothermic cardiopulmonary bypass. An experimental study. J. Thorac. Cardiovasc. Surg., 1984, vol. 87, pp. 658-664.

65. Ottino G., Paulis R., Pansini S. Major sternal wound infection after open-heart surgery: a multi-varient analysis of risk factors in 2579 consecutive operative procedures. Ann. Thorac. Surg., 1987, vol. 44, pp. 173-179.

66. Fransen E., Maessen J., Dentemer M. et al. Impact of blood transfusion on inflammatory mediator release in patients undergoing cardiac surgery. Chest, 1999, vol. 116, pp. 1233-1239.

67. Punjabi P.P., Taylor K.M. The science and practice of cardiopulmonary bypass: From cross circulation to ECMO and SIRS. Global Cardiology Science and Practice. 2013, vol. 82, pp. 249-260.

68. Gardner T.J., Horneffer P.J., Manolio T.A. et al. Stroke following coronary artery bypass grafting. A ten-year study. Ann. Thorac. Surg., 1985, vol. 40, pp. 574-581.

69. Ranucci M., Biagioli B., Scolletta S. et al. Lowest hematocrit on cardiopulmonary bypass impairs the outcome in coronary surgery. Tex. Heart Inst. J., 2006, vol. 33, pp. 300-305.

70. Gibbon J.H.Jr. Application of a mechanical heart and lung apparatus to cardiac surgery. Minn. Med., 1954, vol. 37, pp. 171-185.

71. Ranucci M., Conti D., Castelvecchio S. et al. Hematocrit on cardiopulmonary bypass and outcome after coronary surgery in nontransfused patients. Ann. Thorac. Surg., 2010, vol. 89, pp. 11-17.

72. Gold J.P., Charlson M.E., Williams-Russo P. et al. Improvement of outcomes after coronary artery bypass. A randomized trial comparing intraoperative high versus low mean arterial pressure. J. Thorac. Cardiovasc. Surg., 1995, vol. 110, pp. 1302-1311.

73. Reeves B.C., Murphy G.J. Increased mortality, morbidity, and cost associated with red blood cell transfusion after cardiac surgery. Curr. Opin. Cardiol., 2008, vol. 23, pp. 607-612.

74. Goto T., Yoshitake A., Baba T. et al. Cerebral ischemic disorders and cerebral oxygen balance during cardiopulmonary bypass surgery: preoperative evaluation using magnetic resonance imaging and angiography. Anesth. Analg., 1997, vol. 84, pp. 5-11.

75. Reich D.L., Bodian C.A., Krol M. et al. Intraoperative hemodynamic predictors of mortality, stroke, and myocardial infarction after coronary artery bypass surgery. Anesth. Analg., 1999, vol. 89, pp. 814-822.

76. Gottesman R.F., Sherman P.M., Grega M.A. et al. Watershed strokes after cardiac surgery: diagnosis, etiology, and outcome. Stroke, 2006, vol. 37, pp. 2306-2311.

77. Rogers A.T., Prough D.S., Roy R.C. et al. Cerebrovascular and cerebral metabolic effects of alterations in perfusion flow rate during hypothermic cardiopulmonary bypass in man. J. Thorac. Cardiovasc. Surg., 1992, vol. 103, pp. 363-368.

78. Govier A.V., Reves J.G., McKay R.D. et al. Factors and their influence on regional cerebral blood flow during nonpulsatile cardiopulmonary bypass. Ann. Thorac. Surg., 1984, vol. 38, pp. 592-600.

79. Sakwa M.P., Emery R.W., Shannon F.L. et al. Coronary artery bypass grafting with a minimized cardiopulmonary bypass circuit: a prospective, randomized trial. J. Thorac. Cardiovasc. Surg., 2009, vol. 137, pp. 481-485.

80. Grocott H.P. Blood pressure during cardiopulmonary bypass: how low is too low? Anesth Analg., 2012, vol. 114, no. 3, pp. 488-490.

81. Schell R.M., Kern F.H., Greeley W.J. et al. Cerebral blood flow and metabolism during cardiopulmonary bypass. Anesth. Analg., 1993, vol. 76, pp. 849-865.

82. Grocott H.P., Davie S., Fedorow C. Monitoring of brain function in anesthesia and intensive care. Curr. Opin. Anaesthesiol., 2010, vol. 23, pp. 759-764.

83. Schwartz A.E., Sandhu A.A., Kaplon R.J. et al. Cerebral blood flow is determined by arterial pressure and not cardiopulmonary bypass flow rate. Ann. Thorac. Surg., 1995, 60, pp. 165-170.

84. Grocott H.P., Homi H.M., Puskas F. Cognitive dysfunction after cardiac surgery: revisiting etiology. Semin. Cardiothorac. Vasc. Anesth., 2005, vol. 9, pp. 123-129.

85. Shehata N., Burns L.A., Nathan H. et al. A randomized controlled pilot study of adherence to transfusion strategies in cardiac surgery. Transfusion, 2012, vol. 52, pp. 91-99.

86. Grocott H.P. Avoid hypotension and hypoxia: an old anesthetic adage with renewed relevance from cerebral oximetry monitoring. Can. J. Anaesth., 2011, vol. 58, pp. 697-702.

87. Siepe M., Pfeiffer T., Gieringer A. et al. Increased systemic perfusion pressure during cardiopulmonary bypass is associated with less early postoperative cognitive dysfunction and delirium. Eur. J. Cardiothorac. Surg., 2011, vol. 40, pp. 200-207.

88. Habib R.H., Zacharias A., Schwann T.A. et al. Adverse effects of low hematocrit during cardiopulmonary bypass in the adult: should current practice be changed?. J. Thorac. Cardiovasc. Surg., 2003, vol. 125, pp. 1438-1450.

89. Slogoff S., Reul G.J., Keats A.S. et al. Role of perfusion pressure and flow in major organ dysfunction after cardiopulmonary bypass. Ann. Thorac. Surg., 1990, vol. 50, pp. 911-918.

90. Habib R.H., Zacharias A., Schwann T.A. et al. Role of hemodilutional anemia and transfusion during cardiopulmonary bypass in renal injury after coronary revascularization: implications on operative outcomes. Crit. Care Med., 2005, vol. 33, pp. 1749-1756.

91. Soma Y., Hirotani T., Yozu R. et al. Aclinical study of cerebral circulation during extracorporeal circulation. J. Thorac. Cardiovasc. Surg., 1989, vol. 97, pp. 187-193.

92. Hajjar L.A., Vincent J.L., Galas F.R. et al. Transfusion requirements after cardiac surgery: the TRACS randomized con- trolled trial. JAMA, 2010, vol. 304, pp. 1559-1567.

93. Sotaniemi K.A., Juolasmas A., Hokkanen E.T. Neuropsychologic outcome after open-heart surgery. Arch. Neurol., 1981, vol. 38, pp. 2-8.

94. Hartman G.S., Yao F.S.F., Bruefach M. et al. Severity of atheromatous disease diagnosed by transesopha- geal echocardiography predicts stroke and other outcomes associated with coronary artery surgery: a prospective study. Anesth. Analg., 1996, vol. 83, pp. 701-708.

95. Stammers A.H., Mejak B.L. An update on perfusion safety: does the type of perfusion practice affect the rate of incidents related to cardiopulmonary bypass? Perfusion, 2001, vol. 16, pp. 189-198.

96. Hill S.E., van Wermeskerken G.K., Lardenoye J.W. et al. Intraoperative physiologic variables and outcome in cardiac surgery. Part I. In-hospital mortality. Ann. Thorac. Surg., 2000, vol. 69, pp. 1070-1076.

97. Strandgaard S. Autoregulation of cerebral blood flow in hypertensive patients: the modifying influence of prolonged antihypertensive treatment on the tolerance to acute, drug induced hypotension. Circulation, 1976, vol. 53, pp. 720-727.

98. Javid H., Tufo H.M., Najafi H. et al. Neurologic abnormalities following open heart surgery. J. Thorac. Cardiovasc., 1969, vol. 58, pp. 502-509.

99. Sungurtekin H., Boston U.S., Cook D.J. Bypass flow, mean arterial pressure, and cerebral perfusion during cardiopulmonary bypass in dogs. J. Cardiothorac. Vasc. Anesth., 2000, vol. 14, pp. 25-28.

100. Jewell A.E., Akowuah E.F., Suvarna S.K. et al. A prospective randomised comparison of cardiotomy suction and cell saver for recycling shed blood during cardiac surgery. Eur. J. Cardiothorac. Surg., 2003, vol. 23, pp. 633-636.

101. Swaminathan M., Philips-Bute B.G., Conlon P.J. et al. The association of lowest hematocrit during cardiopulmonary bypass with acute renal injury after coronary artery bypass surgery. Ann. Thorac. Surg., 2003, vol. 76, pp. 784-792.

102. Johnson R.G., Thurer R.L., Kruskall M.S. et al. Comparison of two transfusion strategies after elective operations for myocardial revascularization. J. Thorac. Cardiovasc. Surg., 1992, vol. 104, pp. 307-314.

103. Tanaka J., Shiki K., Asou T. et al. Cerebral autoregulation during deep hypo-thermic nonpulsatile cardiopulmonary bypass with selective cerebral perfusion in dogs. J. Thorac. Cardiovasc. Surg., 1988, vol. 95, pp. 124-132.

104. Joshi B., Ono M., Brown C. et al. Predicting the limits of cerebral autoregulation during cardiopulmonary bypass. Anesth. Analg., 2012, vol. 114, pp. 503-510.

105. Tufo H.M., Ostfeld A.M., Shekelle R. Central nervous system dysfunction following open heart surgery. JAMA, 1970, vol. 212, pp. 1333-1340.

106. Karkouti K., Beattie W.S., Wijeysundera D.N. et al. Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. J. Thorac. Cardiovasc. Surg., 2005, vol. 129, pp. 391-400.

107. van Wermeskerken G.K., Lardenoye J.W., Hill S.E. et al. Intraopera- tive physiologic variables and outcome in cardiac surgery. Part II. Neurologic outcome. Ann. Thorac. Surg., 2000, vol. 69, pp. 1077-1083.

108. Karkouti K., Djaiani G., Borger M.A. et al. Low hematocrit during cardiopulmonary bypass is associated with increased risk of perioperative stroke in cardiac surgery. Ann. Thorac. Surg., 2005, vol. 80, pp. 1381-1387.

109. Vretzakis G., Kleitsaki A., Stamoulis K. et al. The impact of fluid restriction policy in reducing the use of red blood cells in cardiac surgery. Acta Anaesthesiol. Belg., 2009, vol. 60, pp. 221-228.

110. Karkouti K., Wijeysundera D.N., Yau T.M. et al. Influence of erythrocyte transfusion on the risk of acute kidney injury after cardiac surgery differs in anemic and nonanemic patients. Anesthesiology, 2011, vol. 115, pp. 523-530.

111. Waldermar G., Schmidt J.F., Andersen A.R. et al. Angiotensin converting enzyme inhibition and cerebral blood flow autoregulation in normotensive and hy- pertensive man. J. Hypertens., 1989, vol. 7, pp. 229-235.

112. Kincaid E.H., Jones T.J., Stump D.A. et al. Processing scavenged blood with a cell saver reduces cerebral lipid microembolization. Ann. Thorac. Surg., 2000, vol. 70, pp. 1296-1300.

113. Walpoth B.H., Eggensperger N., Hauser S.P. et al. Effects of unprocessed and processed cardiopulmonary bypass blood retransfused into patients after cardiac surgery. Int. J. Artif. Organs., 1999, vol. 22, pp. 210-216.

114. Koch C.G., Li L., Duncan A.I. et al. Morbidity and mortality risk associated with red blood cell and blood-component transfusion in isolated coronary artery bypass grafting. Crit. Care Med., 2006, vol. 34, pp. 1608-1616.

115. Koch C.G., Li L., Duncan A.I. et al. Transfusion in coronary artery bypass grafting is associated with reduced long-term survival. Ann. Thorac. Surg., 2006, vol. 81, pp. 1650-1657.

116. Kolkka R., Hilberman M. Neurologic dysfunction following cardiac operation with low-flow, low-pressure cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg., 1980, vol. 79, pp. 432-437.

117. Kuduvalli M., Oo A.Y., Newall N. et al. Effect of perioperative red blood cell transfusion on 30-day and 1-year mortality following coronary artery bypass surgery. Eur. J. Cardiothorac. Surg., 2005, vol. 27, pp. 592-598.

118. Larsen F.S., Olsen K.S., Hansen B.A. et al. Transcranial Doppler is valid for determination of the lower limit of cerebral blood flow autoregulation. Stroke, 1994, vol. 25, pp. 1985-1988.

119. Lassen N.A. Cerebral blood flow and oxygen consumption in man. Physiol. Rev., 1959, vol. 39, pp. 183-238.

120. Leal-Noval S.R., Jara-Lopez I., Garcia-Garmendia J.L. et al. Influence of erythrocyte concentrate storage time on postsurgical morbidity in cardiac surgical patients. Anesthesiology, 2003, vol. 98, pp. 815-822.

121. Lee L.W.Jr., Brady M.P., Rowe J.M. et al. Effects of extracorporeal circulation upon behavior, personality, and brain function. II. Hemodynamic, metabolic, and psychometric correlations. Ann. Surg., 1971, vol. 173, pp. 1013-1023.

122. Lilleaasen P. Moderate and extreme haemodilution in open heart surgery. Scand. J. Cardiovasc. Surg., 1977, vol. 11, pp. 97-103.

123. Lowenstein E. Blood conservation in open heart surgery. Cleve Clin. Q., 1981, vol. 48, pp. 112-125.

124. Mackay J.H., Feerick A.E., Woodson L.C. et al. Increasing organ blood flow during cardiopulmonary bypass in pigs: comparison of dopamine and perfusion pressure. Crit. Care Med., 1995, vol. 23, pp. 1090-1098.

125. Mathew J.P., Mackensen G.B., Phillips-Bute B. et al. Effects of extreme hemodilution during cardiac surgery on cognitive function in the elderly. Anesthesiology, 2007, vol. 107, pp. 577-584.

126. Murkin J.M., Adams S.J., Novick R.J. et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth. Analg., 2007, vol. 104, pp. 51-58.

127. Murkin J.M., Farrar J.K., Tweed W.A. et al. Cerebral autoregulation and flow/metabolism coupling during cardiopulmonary bypass: the influence of PaCO2. Anesth. Analg., 1987, vol. 66, pp. 825-832.

128. Murkin J.M. Cerebral oximetry: monitoring the brain as the index organ. Anesthesiology, 2011, vol. 114, pp. 12-13.

129. Murphy G.J, Pike K., Rogers C.A. et al. TITRe2 Investigators Liberal or restrictive transfusion after cardiac surgery. N. Engl. J. Med., 2015, vol. 372, no. 11, pp. 997-1008.

130. Murphy G.J., Reeves B.C., Rogers C.A. et al. Increased mortality, postoperative morbidity, and cost after red blood cell transfusion in patients having cardiac surgery. Circulation, 2007, vol. 116, pp. 2544-2552.

131. Murphy G.J., Rizvi S.I., Battaglia F. et al. A pilot randomized controlled trial of the effect of transfusion-threshold reduction on transfusion rates and morbidity after cardiac surgery. Transfus Altern. Transfus. Med., 2007, vol. 9, suppl. 1. pp. 41-42.

132. Murphy G.S., Hessel E.A.II, Groom R.C. Optimal perfusion during cardiopulmonary bypass: an evidence-based approach. Anesth. Analg., 2009, vol. 108, pp. 1394-1417.

133. Murphy M.F., Murphy G.J., Gill R. et al. National comparative audit of blood transfusion: 2011 audit of blood transfusion in adult cardiac surgery. Birming-ham, United Kingdom: National Health Service, 2013.

134. Murphy P.J., Connery C., Hicks G.L. et al. Homologous blood transfusion as a risk factor for postoperative infection after coronary artery bypass graft operations. J. Thorac. Cardiovasc. Surg., 1992, vol. 104, pp. 1092-1099.

135. Napolitano L.M., Kurek S., Luchette F.A. et al. Clinical practice guideline: red blood cell transfusion in adult trauma and critical care. Crit. Care Med., 2009, vol. 37, pp. 3124-3157.

136. Newman M.F., Kramer D., Croughwell N.D. et al. Differential age effects of mean arterial pressure and re-warming on cognitive dysfunction after cardiac surgery. Anesth. Analg., 1995, vol. 81, pp. 236-242.

137. O’Dwyer C., Woodson L.C., Conroy B.P. et al. Regional perfusion abnormalities with phenylepherine during normothermic bypass. Ann. Thorac. Surg., 1997, vol. 63, pp. 728-735.

138. Olsen K.S., Svenden L.B., Larsen F.S. et al. Effect of labatolol on cerebral blood flow, oxygen metabolism, and autoregulation in healthy humans. Br. J. Anaesth., 1995, vol. 75, pp. 51-54.

139. Ottino G., Paulis R., Pansini S. Major sternal wound infection after open-heart surgery: a multi-varient analysis of risk factors in 2579 consecutive operative procedures. Ann. Thorac. Surg., 1987, vol. 44, pp. 173-179.

140. Punjabi P.P., Taylor K.M. The science and practice of cardiopulmonary bypass: From cross circulation to ECMO and SIRS. Global Cardiology Science and Practice. 2013, vol. 82, pp. 249-260.

141. Ranucci M., Biagioli B., Scolletta S. et al. Lowest hematocrit on cardiopulmonary bypass impairs the outcome in coronary surgery. Tex. Heart Inst. J., 2006, vol. 33, pp. 300-305.

142. Ranucci M., Conti D., Castelvecchio S. et al. Hematocrit on cardiopulmonary bypass and outcome after coronary surgery in nontransfused patients. Ann. Thorac. Surg., 2010, vol. 89, pp. 11-17.

143. Reeves B.C., Murphy G.J. Increased mortality, morbidity, and cost associated with red blood cell transfusion after cardiac surgery. Curr. Opin. Cardiol., 2008, vol. 23, pp. 607-612.

144. Reich D.L., Bodian C.A., Krol M. et al. Intraoperative hemodynamic predictors of mortality, stroke, and myocardial infarction after coronary artery bypass surgery. Anesth. Analg., 1999, vol. 89, pp. 814-822.

145. Rogers A.T., Prough D.S., Roy R.C. et al. Cerebrovascular and cerebral metabolic effects of alterations in perfusion flow rate during hypothermic cardiopulmonary bypass in man. J. Thorac. Cardiovasc. Surg., 1992, vol. 103, pp. 363-368.

146. Sakwa M.P., Emery R.W., Shannon F.L. et al. Coronary artery bypass grafting with a minimized cardiopulmonary bypass circuit: a prospective, randomized trial. J. Thorac. Cardiovasc. Surg., 2009, vol. 137, pp. 481-485.

147. Schell R.M., Kern F.H., Greeley W.J. et al. Cerebral blood flow and metabolism during cardiopulmonary bypass. Anesth. Analg., 1993, vol. 76, pp. 849-865.

148. Schwartz A.E., Sandhu A.A., Kaplon R.J. et al. Cerebral blood flow is determined by arterial pressure and not cardiopulmonary bypass flow rate. Ann. Thorac. Surg., 1995, 60, pp. 165-170.

149. Shehata N., Burns L.A., Nathan H. et al. A randomized controlled pilot study of adherence to transfusion strategies in cardiac surgery. Transfusion, 2012, vol. 52, pp. 91-99.

150. Siepe M., Pfeiffer T., Gieringer A. et al. Increased systemic perfusion pressure during cardiopulmonary bypass is associated with less early postoperative cognitive dysfunction and delirium. Eur. J. Cardiothorac. Surg., 2011, vol. 40, pp. 200-207.

151. Slogoff S., Reul G.J., Keats A.S. et al. Role of perfusion pressure and flow in major organ dysfunction after cardiopulmonary bypass. Ann. Thorac. Surg., 1990, vol. 50, pp. 911-918.

152. Soma Y., Hirotani T., Yozu R. et al. Aclinical study of cerebral circulation during extracorporeal circulation. J. Thorac. Cardiovasc. Surg., 1989, vol. 97, pp. 187-193.

153. Sotaniemi K.A., Juolasmas A., Hokkanen E.T. Neuropsychologic outcome after open-heart surgery. Arch. Neurol., 1981, vol. 38, pp. 2-8.

154. Stammers A.H., Mejak B.L. An update on perfusion safety: does the type of perfusion practice affect the rate of incidents related to cardiopulmonary bypass? Perfusion, 2001, vol. 16, pp. 189-198.

155. Strandgaard S. Autoregulation of cerebral blood flow in hypertensive patients: the modifying influence of prolonged antihypertensive treatment on the tolerance to acute, drug induced hypotension. Circulation, 1976, vol. 53, pp. 720-727.

156. Sungurtekin H., Boston U.S., Cook D.J. Bypass flow, mean arterial pressure, and cerebral perfusion during cardiopulmonary bypass in dogs. J. Cardiothorac. Vasc. Anesth., 2000, vol. 14, pp. 25-28.

157. Swaminathan M., Philips-Bute B.G., Conlon P.J. et al. The association of lowest hematocrit during cardiopulmonary bypass with acute renal injury after coronary artery bypass surgery. Ann. Thorac. Surg., 2003, vol. 76, pp. 784-792.

158. Tanaka J., Shiki K., Asou T. et al. Cerebral autoregulation during deep hypo-thermic nonpulsatile cardiopulmonary bypass with selective cerebral perfusion in dogs. J. Thorac. Cardiovasc. Surg., 1988, vol. 95, pp. 124-132.

159. Tufo H.M., Ostfeld A.M., Shekelle R. Central nervous system dysfunction following open heart surgery. JAMA, 1970, vol. 212, pp. 1333-1340.

160. van Wermeskerken G.K., Lardenoye J.W., Hill S.E. et al. Intraopera- tive physiologic variables and outcome in cardiac surgery. Part II. Neurologic outcome. Ann. Thorac. Surg., 2000, vol. 69, pp. 1077-1083.

161. Vretzakis G., Kleitsaki A., Stamoulis K. et al. The impact of fluid restriction policy in reducing the use of red blood cells in cardiac surgery. Acta Anaesthesiol. Belg., 2009, vol. 60, pp. 221-228.

162. Waldermar G., Schmidt J.F., Andersen A.R. et al. Angiotensin converting enzyme inhibition and cerebral blood flow autoregulation in normotensive and hy- pertensive man. J. Hypertens., 1989, vol. 7, pp. 229-235.

163. Walpoth B.H., Eggensperger N., Hauser S.P. et al. Effects of unprocessed and processed cardiopulmonary bypass blood retransfused into patients after cardiac surgery. Int. J. Artif. Organs., 1999, vol. 22, pp. 210-216.


Review

For citations:


Kornilov I.A., Ponomarev D.N., Shmyrev V.A., Skopets A.A., Sinelnikov Yu.S., Lomivorotov V.V. PHYSIOLOGICAL PARAMETERS OF ARTIFICIAL BLOOD CIRCULATION FROM THE POSITION OF THE EVIDENCE BASED MEDICINE. PART I. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2016;13(2):57-69. (In Russ.) https://doi.org/10.21292/2078-5658-2016-13-2-57-69



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)