Preview

Вестник анестезиологии и реаниматологии

Расширенный поиск

ФИЗИОЛОГИЧЕСКИЕ ПАРАМЕТРЫ ИСКУССТВЕННОГО КРОВООБРАЩЕНИЯ С ТОЧКИ ЗРЕНИЯ ДОКАЗАТЕЛЬНОЙ МЕДИЦИНЫ. ЧАСТЬ I

https://doi.org/10.21292/2078-5658-2016-13-2-57-69

Полный текст:

Аннотация

Искусственное кровообращение является основным методом обеспечения кардиохирургических операций. Данный обзор посвящен аспектам управления основными физиологическими параметрами во время искусственного кровообращения у взрослых пациентов с позиции доказательной медицины.

 

Об авторах

И. А. Корнилов
ФГБУ«Новосибирский научно-исследовательский институт патологии кровообращения им. акад. Е. Н. Мешалкина» МЗ РФ, г. Новосибирск
Россия
кандидат медицинских наук, врач анестезиолог-реаниматолог


Д. Н. Пономарев
ФГБУ«Новосибирский научно-исследовательский институт патологии кровообращения им. акад. Е. Н. Мешалкина» МЗ РФ, г. Новосибирск
Россия
врач анестезиолог-реаниматолог отделения анестезиологии и реанимации


В. А. Шмырев
ФГБУ«Новосибирский научно-исследовательский институт патологии кровообращения им. акад. Е. Н. Мешалкина» МЗ РФ, г. Новосибирск
Россия
заведующий отделением анестезиологии и реанимации


А. А. Скопец
ГБУЗ «Научно-исследовательский институт – краевая клиническая больница № 1 им. проф. С. В. Очаповского», г. Краснодар
Россия
кандидат медицинских наук, заведующий отделением анестезиологии и реанимации № 2


Ю. С. Синельников
ФГБУ «Федеральный центр сердечно-сосудистой хирургии», г. Пермь
Россия
доктор медицинских наук, заведующий отделением детской кардиохирургии


В. В. Ломиворотов
ФГБУ«Новосибирский научно-исследовательский институт патологии кровообращения им. акад. Е. Н. Мешалкина» МЗ РФ, г. Новосибирск
Россия
доктор медицинских наук, заместитель директора по научной работе


Список литературы

1. Аксельрод Б. А. Региональная оксигенация в обеспечении безопасности кардиохирургических операций // Патология кровообращ. и кардиохирур. – 2014. – Т. 18, № 3. – С. 53–58.

2. Bartels C., Gerdes A., Babin-Ebell J. et al. Working Group on Extracorporeal Circulation and Mechanical Ventricular Assist Devices of the German Society for Thoracic and Cardiovascular Surgery. Cardiopulmonary bypass: evidence or experience based? // J. Thorac. Cardiovasc. Surg. – 2002. – Vol. 124. – P. 20–27.

3. Bastien O., Piriou V., Aouifi A. et al. Relative importance of flow versus pressure in splanchnic perfusion during cardiopulmonary bypass in rabbits // Anesthesiology. – 2000. – Vol. 92. – P. 457–464.

4. Bennett-Guerrero E., Zhao Y., O’Brien S. M. et al. Variation in use of blood transfusion in coronary artery bypass graft surgery // JAMA. – 2010. – Vol. 304. – P. 1568–1575.

5. Blumberg N., Heal J. Transfusion and recipient immune function // Arch. Pathol. Lab. Med. – 1989. – Vol. 113. – P. 246–253.

6. Boston U. S., Slater J. M., Orszulak T. A. et al. Hierarchy of regional oxygen delivery during cardiopulmonary bypass // Ann. Thorac. Surg. – 2001. – Vol. 71. – P. 260–264.

7. Bracey A. W., Radovancevic R., Riggs S. A. et al. Lowering the hemoglobin threshold for transfusion in coronary artery bypass procedures: effect on patient outcome // Transfusion. – 1999. – Vol. 39. – P. 1070–1077.

8. Brauer S. D., Applegate R. L. II, Jameson J. J. et al. Association of plasma dilution with cardiopulmonary bypass-associated bleeding and morbidity // J. Cardiothorac. Vasc. Anesth. – 2013. – Vol. 27. – P. 845–852.

9. Burman J. F., Westlake A. S., Davidson S. J. et al. Study of five cell salvage machines in coronary artery surgery // Transfus. Med. – 2002. – Vol. 12. – P. 173–179.

10. Carrier M., Denault A., Lavoie J., Perrault L. P. Randomized controlled trial of pericardial blood processing with a cellsaving device on neurologic markers in elderly patients undergoing coronary artery bypass graft surgery // Ann. Thorac. Surg. – 2006. – Vol. 82. – P. 51–55.

11. Carson J. L., Carless P. A., Hébert P. C. Outcomes using lower vs higher hemoglobin thresholds for red blood cell transfusion // JAMA. – 2013. – Vol. 309. – P. 83–84.

12. Carson J. L., Carless P. A., Hebert P. C. Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion // Cochrane Database Syst. Rev. – 2012. –4:CD002042.

13. Carson J. L., Grossman B. J., Kleinman S. et al. Red blood cell transfusion: a clinical practice guideline from the AABB* // Ann. Intern. Med. – 2012. – Vol. 157. – P. 49–58.

14. Carson J. L., Noveck H., Berlin J. A. et al. Mortality and morbidity in patients with very low postoperative Hb levels who decline blood transfusion // Transfusion. – 2002. – Vol. 42. – P. 812–818.

15. Cohn L. H., Fosberg A. M., Anderson W. P. et al. The effects of phlebotomy, hemodilution, and autologous transfusion on systemic oxygenation and whole blood utilization in open heart surgery // Chest. – 1975. – Vol. 68. – P. 283–287.

16. Cook D. J., Oliver W. C. Jr, Orszulak T. A. et al. Cardiopulmonary bypass temperature, hematocrit, and cerebral oxygen delivery in humans // Ann. Thorac. Surg. – 1995. – Vol. 60. – P. 1671–1677.

17. Cook D. J., Proper J. A., Orszulak T. A. et al. Effect of pump flow rate on cerebral blood flow during hypothermic cardiopulmonary bypass in adults // J. Cardiothorac. Vasc. Anesth. – 1997. – Vol. 11. – P. 415–419.

18. Cosgrove D. M., Thurere R. L., Lytle B. W. et al. Determinants of blood utilization during myocardial revascularization // Ann. Thorac. Surg. – 1985. – Vol. 40. – P. 380–384.

19. Croughwell N., Lyth M., Quill T. J. et al. Diabetic patients have abnormal cerebral autoregulation during cardiopulmonary bypass // Circulation. – 1990. – Vol. 82. – P. 407–412.

20. Czosnyka M., Brady K., Reinhard M. et al. Monitoring of cerebrovascular autoregulation: facts, myths, and missing links // Neurocrit. Care. – 2009. – Vol. 10. – P. 373–386.

21. DeFoe G. R., Ross C. S., Olmstead E. M. et al. Lowest hematocrit on bypass and adverse outcomes associated with coronary artery bypass grafting // Ann. Thorac. Surg. – 2001. – Vol. 71. – P. 769–776.

22. Djaiani G., Fedorko L., Borger M. A. et al. Continuous-flow cell saver reduces cognitive decline in elderly patients after coronary bypass surgery // Circulation. – 2007. – Vol. 116. – P. 1888–1895.

23. Drummond J. C. The lower limit of autoregulation: time to revise our thinking? // Anesthesiology. – 1997. – Vol. 86. – P. 1431–1432.

24. Ellis R. J., Wigniewski A., Potts R. et al. Reduction of flow rate and arterial pressure at moderate hypothermia does not result in cerebral dysfunction // J. Thorac. Cardiovasc. Surg. – 1980. – Vol. 79. – P. 173– 180.

25. Engoren M. C., Habib R. H., Zacharias A. et al. Effect of blood transfusion on long-term survival after cardiac operation // Ann. Thorac. Surg. – 2002. – Vol. 74. – P. 1180–1186.

26. Fang C. W., Helm R. E., Krieger K. H. et al. Impact of minimum hematocrit during cardiopulmonary bypass on mortality in patients undergoing coronary artery surgery // Circulation. – 1997. – Vol. 96, suppl. 9. – P. II194 –II199.

27. Farmer S. L., Towler S. C., Leahy M. F. et al. Drivers for change: Western Australia Patient Blood Management Program (WA PBMP), World Health Assembly (WHA) and Advisory Committee on Blood Safety and Availability (ACBSA) // Best. Pract. Res. Clin. Anaesthesiol. – 2013. – Vol. 27. – P. 43–58.

28. Ferraris V. A., Brown J. R., Despotis G. J. et al. 2011 Update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines // Ann. Thorac. Surg. – 2011. – Vol. 91. – P. 944–982.

29. Fischer G. W., Lin H. M., Krol M. et al. Noninvasive cerebral oxygenation may predict outcome in patients undergoing aortic arch surgery // J. Thorac. Cardiovasc. Surg. – 2010. – Vol. 141. – P. 815–821.

30. Fish K. J., Helms K. N., Sernquist F. H. et al. A prospective, randomized study of the effects of prostacyclin on neuropsychologic dysfunction after coronary artery operation // J. Thorac. Cardiovasc. Surg. – 1987. – Vol. 93. – P. 609–615.

31. Fisher U. M., Weissenberger W. K., Warters R. D. et al. Impact of cardiopulmonary bypass management on postcardiac surgery renal function // Perfusion. – 2002. – Vol. 17. – P. 401–406.

32. Fox L. S., Blackstone E. H., Kirklin J. W. et al. Relationship of brain blood flow and oxygen consumption to perfusion flow rate during profoundly hypothermic cardiopulmonary bypass. An experimental study // J. Thorac. Cardiovasc. Surg. – 1984. – Vol. 87. – P. 658–664.

33. Fransen E., Maessen J., Dentemer M. et al. Impact of blood transfusion on inflammatory mediator release in patients undergoing cardiac surgery // Chest. – 1999. – Vol. 116. – P. 1233–1239.

34. Gardner T. J., Horneffer P. J., Manolio T. A. et al. Stroke following coronary artery bypass grafting. A ten-year study // Ann. Thorac. Surg. – 1985. – Vol. 40. – P. 574 –581.

35. Gibbon J. H. Jr. Application of a mechanical heart and lung apparatus to cardiac surgery // Minn. Med. – 1954. – Vol. 37. – P. 171–185.

36. Gold J. P., Charlson M. E., Williams-Russo P. et al. Improvement of outcomes after coronary artery bypass. A randomized trial comparing intraoperative high versus low mean arterial pressure // J. Thorac. Cardiovasc. Surg. – 1995. – Vol. 110. – P. 1302–1311.

37. Goto T., Yoshitake A., Baba T. et al. Cerebral ischemic disorders and cerebral oxygen balance during cardiopulmonary bypass surgery: preoperative evaluation using magnetic resonance imaging and angiography // Anesth. Analg. – 1997. – Vol. 84. – P. 5–11.

38. Gottesman R. F., Sherman P. M., Grega M. A. et al. Watershed strokes after cardiac surgery: diagnosis, etiology, and outcome // Stroke. – 2006. – Vol. 37. – P. 2306–2311.

39. Govier A. V., Reves J. G., McKay R. D. et al. Factors and their influence on regional cerebral blood flow during nonpulsatile cardiopulmonary bypass // Ann. Thorac. Surg. –1984. – Vol. 38. – P. 592–600.

40. Grocott H. P. Blood pressure during cardiopulmonary bypass: how low is too low? // Anesth Analg. – 2012. – Vol. 114, № 3. – Р. 488–490.

41. Grocott H. P., Davie S., Fedorow C. Monitoring of brain function in anesthesia and intensive care // Curr. Opin. Anaesthesiol. – 2010. – Vol. 23. – P. 759–764.

42. Grocott H. P., Homi H. M., Puskas F. Cognitive dysfunction after cardiac surgery: revisiting etiology // Semin. Cardiothorac. Vasc. Anesth. – 2005. – Vol. 9. – P. 123–129.

43. Grocott H. P. Avoid hypotension and hypoxia: an old anesthetic adage with renewed relevance from cerebral oximetry monitoring // Can. J. Anaesth. – 2011. – Vol. 58. – P. 697–702.

44. Habib R. H., Zacharias A., Schwann T. A. et al. Adverse effects of low hematocrit during cardiopulmonary bypass in the adult: should current practice be changed? // J. Thorac. Cardiovasc. Surg. – 2003. – Vol. 125. – P. 1438–1450.

45. Habib R. H., Zacharias A., Schwann T. A. et al. Role of hemodilutional anemia and transfusion during cardiopulmonary bypass in renal injury after coronary revascularization: implications on operative outcomes // Crit. Care Med. – 2005. – Vol. 33. – P. 1749–1756.

46. Hajjar L. A., Vincent J. L., Galas F. R. et al. Transfusion requirements after cardiac surgery: the TRACS randomized controlled trial // JAMA. – 2010. – Vol. 304. – P. 1559–1567.

47. Hartman G. S., Yao F. S. F., Bruefach M. et al. Severity of atheromatous disease diagnosed by transesopha- geal echocardiography predicts stroke and other outcomes associated with coronary artery surgery: a prospective study // Anesth. Analg. – 1996. – Vol. 83. – P. 701–708.

48. Hill S. E., van Wermeskerken G. K., Lardenoye J. W. et al. Intraoperative physiologic variables and outcome in cardiac surgery. Part I. In-hospital mortality // Ann. Thorac. Surg. – 2000. – Vol. 69. – P. 1070–1076.

49. Javid H., Tufo H. M., Najafi H. et al. Neurologic abnormalities following open heart surgery // J. Thorac. Cardiovasc. – 1969. – Vol. 58. – P. 502–509.

50. Jewell A. E., Akowuah E. F., Suvarna S. K. et al. A prospective randomised comparison of cardiotomy suction and cell saver for recycling shed blood during cardiac surgery // Eur. J. Cardiothorac. Surg. – 2003. – Vol. 23. – P. 633–636.

51. Johnson R. G., Thurer R. L., Kruskall M. S. et al. Comparison of two transfusion strategies after elective operations for myocardial revascularization // J. Thorac. Cardiovasc. Surg. – 1992. – Vol. 104. – P. 307–314.

52. Joshi B., Ono M., Brown C. et al. Predicting the limits of cerebral autoregulation during cardiopulmonary bypass // Anesth. Analg. – 2012. – Vol. 114. – P. 503–510.

53. Karkouti K., Beattie W. S., Wijeysundera D. N. et al. Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery // J. Thorac. Cardiovasc. Surg. – 2005. – Vol. 129. – P. 391–400.

54. Karkouti K., Djaiani G., Borger M. A. et al. Low hematocrit during cardiopulmonary bypass is associated with increased risk of perioperative stroke in cardiac surgery // Ann. Thorac. Surg. – 2005. – Vol. 80. – P. 1381–1387.

55. Karkouti K., Wijeysundera D. N., Yau T. M. et al. Influence of erythrocyte transfusion on the risk of acute kidney injury after cardiac surgery differs in anemic and nonanemic patients // Anesthesiology. – 2011. – Vol. 115. – P. 523–530.

56. Kincaid E. H., Jones T. J., Stump D. A. et al. Processing scavenged blood with a cell saver reduces cerebral lipid microembolization // Ann. Thorac. Surg. – 2000. – Vol. 70. – P. 1296–1300.

57. Koch C. G., Li L., Duncan A. I. et al. Morbidity and mortality risk associated with red blood cell and blood-component transfusion in isolated coronary artery bypass grafting // Crit. Care Med. – 2006. – Vol. 34. – P. 1608–1616.

58. Koch C. G., Li L., Duncan A. I. et al. Transfusion in coronary artery bypass grafting is associated with reduced long-term survival // Ann. Thorac. Surg. – 2006. – Vol. 81. – P. 1650–1657.

59. Kolkka R., Hilberman M. Neurologic dysfunction following cardiac operation with low-flow, low-pressure cardiopulmonary bypass // J. Thorac. Cardiovasc. Surg. – 1980. – Vol. 79. – P. 432–437.

60. Kuduvalli M., Oo A. Y., Newall N. et al. Effect of perioperative red blood cell transfusion on 30-day and 1-year mortality following coronary artery bypass surgery // Eur. J. Cardiothorac. Surg. – 2005. – Vol. 27. – P. 592–598.

61. Larsen F. S., Olsen K. S., Hansen B. A. et al. Transcranial Doppler is valid for determination of the lower limit of cerebral blood flow autoregulation // Stroke. – 1994. – Vol. 25. – P. 1985–1988.

62. Lassen N. A. Cerebral blood flow and oxygen consumption in man // Physiol. Rev. – 1959. – Vol. 39. – P. 183–238.

63. Leal-Noval S. R., Jara-Lopez I., Garcia-Garmendia J. L. et al. Influence of erythrocyte concentrate storage time on postsurgical morbidity in cardiac surgical patients // Anesthesiology. – 2003. – Vol. 98. – P. 815–822.

64. Lee L. W. Jr., Brady M. P., Rowe J. M. et al. Effects of extracorporeal circulation upon behavior, personality, and brain function. II. Hemodynamic, metabolic, and psychometric correlations // Ann. Surg. – 1971. – Vol. 173. – P. 1013–1023.

65. Lilleaasen P. Moderate and extreme haemodilution in open heart surgery // Scand. J. Cardiovasc. Surg. – 1977. – Vol. 11. – P. 97–103.

66. Lowenstein E. Blood conservation in open heart surgery // Cleve Clin. Q. – 1981. – Vol. 48. – P. 112–125.

67. Mackay J. H., Feerick A. E., Woodson L. C. et al. Increasing organ blood flow during cardiopulmonary bypass in pigs: comparison of dopamine and perfusion pressure // Crit. Care Med. – 1995. – Vol. 23. – P. 1090–1098.

68. Mathew J. P., Mackensen G. B., Phillips-Bute B. et al. Effects of extreme hemodilution during cardiac surgery on cognitive function in the elderly // Anesthesiology. – 2007. – Vol. 107. – P. 577–584.

69. Murkin J. M., Adams S. J., Novick R. J. et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study // Anesth. Analg. – 2007. – Vol. 104. – P. 51–58.

70. Murkin J. M., Farrar J. K., Tweed W. A. et al. Cerebral autoregulation and flow/metabolism coupling during cardiopulmonary bypass: the influence of PaCO2 // Anesth. Analg. – 1987. – Vol. 66. – P. 825–832.

71. Murkin J. M. Cerebral oximetry: monitoring the brain as the index organ // Anesthesiology. – 2011. – Vol. 114. – P. 12–13.

72. Murphy G. J., Pike K., Rogers C. A. et al. TITRe2 Investigators Liberal or restrictive transfusion after cardiac surgery // N. Engl. J. Med. – 2015. – Vol. 372, № 11. – Р. 997–1008.

73. Murphy G. J., Reeves B. C., Rogers C. A. et al. Increased mortality, postoperative morbidity, and cost after red blood cell transfusion in patients having cardiac surgery // Circulation. – 2007. – Vol. 116. – P. 2544–2552.

74. Murphy G. J., Rizvi S. I., Battaglia F. et al. A pilot randomized controlled trial of the effect of transfusion-threshold reduction on transfusion rates and morbidity after cardiac surgery // Transfus Altern. Transfus. Med. – 2007. – Vol. 9, suppl. 1. – P. 41–42.

75. Murphy G. S., Hessel E. A. II, Groom R. C. Optimal perfusion during cardiopulmonary bypass: an evidence-based approach // Anesth. Analg. – 2009. – Vol. 108. – P. 1394–1417.

76. Murphy M. F., Murphy G. J., Gill R. et al. National comparative audit of blood transfusion: 2011 audit of blood transfusion in adult cardiac surgery. Birmingham, United Kingdom: National Health Service, 2013.

77. Murphy P. J., Connery C., Hicks G. L. et al. Homologous blood transfusion as a risk factor for postoperative infection after coronary artery bypass graft operations // J. Thorac. Cardiovasc. Surg. – 1992. – Vol. 104. – P. 1092–1099.

78. Napolitano L. M., Kurek S., Luchette F. A. et al. Clinical practice guideline: red blood cell transfusion in adult trauma and critical care // Crit. Care Med. – 2009. – Vol. 37. – P. 3124–3157.

79. Newman M. F., Kramer D., Croughwell N. D. et al. Differential age effects of mean arterial pressure and re-warming on cognitive dysfunction after cardiac surgery // Anesth. Analg. – 1995. – Vol. 81. – P. 236–242.

80. O’Dwyer C., Woodson L. C., Conroy B. P. et al. Regional perfusion abnormalities with phenylepherine during normothermic bypass // Ann. Thorac. Surg. – 1997. – Vol. 63. – P. 728–735.

81. Olsen K. S., Svenden L. B., Larsen F. S. et al. Effect of labatolol on cerebral blood flow, oxygen metabolism, and autoregulation in healthy humans // Br. J. Anaesth. – 1995. – Vol. 75. – P. 51–54.

82. Ottino G., Paulis R., Pansini S. Major sternal wound infection after open-heart surgery: a multi-varient analysis of risk factors in 2579 consecutive operative procedures // Ann. Thorac. Surg. – 1987. – Vol. 44. – P. 173–179.

83. Punjabi P. P., Taylor K. M. The science and practice of cardiopulmonary bypass: From cross circulation to ECMO and SIRS // Global Cardiology Science and Practice. – 2013. – №82. – P. 249-260.

84. Ranucci M., Biagioli B., Scolletta S. et al. Lowest hematocrit on cardiopulmonary bypass impairs the outcome in coronary surgery // Tex. Heart. Inst. J. – 2006. – Vol. 33. – P. 300–305.

85. Ranucci M., Conti D., Castelvecchio S. et al. Hematocrit on cardiopulmonary bypass and outcome after coronary surgery in nontransfused patients // Ann. Thorac. Surg. – 2010. –Vol. 89. – P. 11–17.

86. Reeves B. C., Murphy G. J. Increased mortality, morbidity, and cost associated with red blood cell transfusion after cardiac surgery // Curr. Opin. Cardiol. – 2008. – Vol. 23. – P. 607–612.

87. Reich D. L., Bodian C. A., Krol M. et al. Intraoperative hemodynamic predictors of mortality, stroke, and myocardial infarction after coronary artery bypass surgery // Anesth. Analg. – 1999. – Vol. 89. – P. 814–822.

88. Rogers A. T., Prough D. S., Roy R. C. et al. Cerebrovascular and cerebral metabolic effects of alterations in perfusion flow rate during hypothermic cardiopulmonary bypass in man // J. Thorac. Cardiovasc. Surg. – 1992. – Vol. 103. – P. 363–368.

89. Sakwa M. P., Emery R. W., Shannon F. L. et al. Coronary artery bypass grafting with a minimized cardiopulmonary bypass circuit: a prospective, randomized trial // J. Thorac. Cardiovasc. Surg. – 2009. – Vol. 137. – P. 481–485.

90. Schell R. M., Kern F. H., Greeley W. J. et al. Cerebral blood flow and metabolism during cardiopulmonary bypass // Anesth. Analg. – 1993. – Vol. 76. – P. 849–865.

91. Schwartz A. E., Sandhu A. A., Kaplon R. J. et al. Cerebral blood flow is determined by arterial pressure and not cardiopulmonary bypass flow rate // Ann. Thorac. Surg. – 1995. – 60. – P. 165–170.

92. Shehata N., Burns L. A., Nathan H. et al. A randomized controlled pilot study of adherence to transfusion strategies in cardiac surgery // Transfusion. – 2012. – Vol. 52. – Р. 91–99.

93. Siepe M., Pfeiffer T., Gieringer A. et al. Increased systemic perfusion pressure during cardiopulmonary bypass is associated with less early postoperative cognitive dysfunction and delirium // Eur. J. Cardiothorac. Surg. – 2011. – Vol. 40. – Р. 200–207.

94. Slogoff S., Reul G. J., Keats A. S. et al. Role of perfusion pressure and flow in major organ dysfunction after cardiopulmonary bypass // Ann. Thorac. Surg. – 1990. – Vol. 50. – Р. 911–918.

95. Soma Y., Hirotani T., Yozu R. et al. Aclinical study of cerebral circulation during extracorporeal circulation // J. Thorac. Cardiovasc. Surg. – 1989. – Vol. 97. – Р. 187–193.

96. Sotaniemi K. A., Juolasmas A., Hokkanen E. T. Neuropsychologic outcome after open-heart surgery // Arch. Neurol. – 1981. – Vol. 38. – Р. 2–8.

97. Stammers A. H., Mejak B. L. An update on perfusion safety: does the type of perfusion practice affect the rate of incidents related to cardiopulmonary bypass? // Perfusion. – 2001. – Vol. 16. – Р. 189–198.

98. Strandgaard S. Autoregulation of cerebral blood flow in hypertensive patients: the modifying influence of prolonged antihypertensive treatment on the tolerance to acute, drug induced hypotension // Circulation. – 1976. – Vol. 53. – Р. 720–727.

99. Sungurtekin H., Boston U. S., Cook D. J. Bypass flow, mean arterial pressure, and cerebral perfusion during cardiopulmonary bypass in dogs // J. Cardiothorac. Vasc. Anesth. – 2000. – Vol. 14. – Р. 25–28.

100. Swaminathan M., Philips-Bute B. G., Conlon P. J. et al. The association of lowest hematocrit during cardiopulmonary bypass with acute renal injury after coronary artery bypass surgery // Ann. Thorac. Surg. – 2003. – Vol. 76. – Р. 784–792.

101. Tanaka J., Shiki K., Asou T. et al. Cerebral autoregulation during deep hypothermic nonpulsatile cardiopulmonary bypass with selective cerebral perfusion in dogs // J. Thorac. Cardiovasc. Surg. – 1988. – Vol. 95. – Р. 124–132.

102. Tufo H. M., Ostfeld A. M., Shekelle R. Central nervous system dysfunction following open heart surgery // JAMA. – 1970. – Vol. 212. – Р. 1333–1340.

103. van Wermeskerken G. K., Lardenoye J. W., Hill S. E. et al. Intraopera- tive physiologic variables and outcome in cardiac surgery. Part II. Neurologic outcome // Ann. Thorac. Surg. – 2000. – Vol. 69. – Р. 1077–1083.

104. Vretzakis G., Kleitsaki A., Stamoulis K. et al. The impact of fluid restriction policy in reducing the use of red blood cells in cardiac surgery // Acta Anaesthesiol. Belg. – 2009. – Vol. 60. – Р. 221–228.

105. Waldermar G., Schmidt J. F., Andersen A. R. et al. Angiotensin converting enzyme inhibition and cerebral blood flow autoregulation in normotensive and hy- pertensive man // J. Hypertens. – 1989. – Vol. 7. – Р. 229–235.

106. Walpoth B. H., Eggensperger N., Hauser S. P. et al. Effects of unprocessed and processed cardiopulmonary bypass blood retransfused into patients after cardiac surgery // Int. J. Artif. Organs. – 1999. – Vol. 22. – Р. 210–216.


Для цитирования:


Корнилов И.А., Пономарев Д.Н., Шмырев В.А., Скопец А.А., Синельников Ю.С., Ломиворотов В.В. ФИЗИОЛОГИЧЕСКИЕ ПАРАМЕТРЫ ИСКУССТВЕННОГО КРОВООБРАЩЕНИЯ С ТОЧКИ ЗРЕНИЯ ДОКАЗАТЕЛЬНОЙ МЕДИЦИНЫ. ЧАСТЬ I. Вестник анестезиологии и реаниматологии. 2016;13(2):57-69. https://doi.org/10.21292/2078-5658-2016-13-2-57-69

For citation:


Kornilov I.A., Ponomarev D.N., Shmyrev V.A., Skopets A.A., Sinelnikov Y.S., Lomivorotov V.V. PHYSIOLOGICAL PARAMETERS OF ARTIFICIAL BLOOD CIRCULATION FROM THE POSITION OF THE EVIDENCE BASED MEDICINE. PART I. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2016;13(2):57-69. (In Russ.) https://doi.org/10.21292/2078-5658-2016-13-2-57-69

Просмотров: 53


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)