Сardiac index and stroke volume variation estimated by the pulse wave transit time analysis in comparison with variables derived by pulse contour analysis after coronary revascularization on a beating heart
https://doi.org/10.24884/2078-5658-2023-20-5-17-25
Abstract
The objective was to validate cardiac index (CI) and stroke volume variation (SVV) measured by pulse wave transit time (PWTT) technology using estimated continuous cardiac output (esCCO) technique, with pulse contour analysis (PCA) after off-pump coronary artery bypass grafting (OPCAB)
Materials and methods. The study involved 21 patients after elective OPCAB. In all patients, CI and SVV were measured with both esCCO technique (CIesCCO and esSVV) and PCA (CIPCA and SVVPCA). The agreement between methods was analyzed using correlation analysis and Bland-Altman analysis. In addition, the trending ability of esCCO technique to control changes in CI during dynamic tests was investigated.
Results. During the study, 178 pairs for CI and 174 pairs for SVV were collected. The mean bias between CIesCCO and CIPCA was 0.06 L·min–1 m–2 with limits of agreement of ± 0.92 L·min–1 m–2 and a percentage error of 35.3%. The concordance rate of CIesCCO was 70%. The mean bias between esSVV and SVVPCA achieved – 6.1% with limits of agreement of ± 15.5% and percentage error of 137%.
Conclusions. The coherence of CIesCCO and esSVV based on PWTT in comparison with PCA is not appropriate. Further development of this monitoring algorithm may be required for more correct measurement of cardiac output and fluid responsiveness
About the Authors
D. A. VolkovRussian Federation
Volkov Dmitriy A - Assistant Professor of the Department of Anesthesiology, Resuscitation and Intensive Care
tel.: +7 (911) 874-14-63
Northern State Medical University, 51, Troitsky str., Arkhangelsk, 163000
City Clinical Hospital № 1 named after E. E. Volosevitch,
1, Suvorova str., Arkhangelsk, 163001
E. V. Fot
Russian Federation
Fot Evgeniya V. - Cand. of Sci. (Med.), Associate Professor, Associate Professor of Anesthesiology and Intensive Care Department
tel.: +7 (8182) 63-27-30
Northern State Medical University, 51, Troitsky str., Arkhangelsk, 163000
City Clinical Hospital № 1 named after E. E. Volosevitch,
1, Suvorova str., Arkhangelsk, 163001
A. A. Smetkin
Russian Federation
Smetkin Alexey A. - Cand. of Sci. (Med.), Associate Professor of Anesthesiology and Intensive Care Department
tel.: +7 (8182) 63-27-30
Northern State Medical University, 51, Troitsky str., Arkhangelsk, 163000
City Clinical Hospital № 1 named after E. E. Volosevitch,
1, Suvorova str., Arkhangelsk, 163001
T. N. Semenkova
Russian Federation
Semenkova Tatyana N. - Physician of Anesthesiology and Intensive Care Department
tel.: +7 (8182) 63-28-31
1, Suvorova str., Arkhangelsk, 163001
K. V. Paromov
Russian Federation
Paromov Konstantin V. - Cand. of Sci. (Med.), Physician of Anesthesiology and Intensive Care Department
tel.: +7 (8182) 63-29-55
1, Suvorova str., Arkhangelsk, 163001
V. V. Kuzkov
Russian Federation
Kuzkov Vsevolod V. - Dr. of Sci. (Med.), Associate Professor, Professor of Anesthesiology and Intensive Care Department
tel.: +7 (8182) 63-27-30
Northern State Medical University, 51, Troitsky str., Arkhangelsk, 163000
City Clinical Hospital № 1 named after E. E. Volosevitch,
1, Suvorova str., Arkhangelsk, 163001
M. Yu. Kirov
Russian Federation
Kirov Mikhail Yu. - Dr. of Sci. (Med.), Professor , Corresponding Member of the Russian Academy of Sciences, Head of Anesthesiology and Intensive Care Department
tel.: (8182) 63-29-86
Northern State Medical University, 51, Troitsky str., Arkhangelsk, 163000
City Clinical Hospital № 1 named after E. E. Volosevitch,
1, Suvorova str., Arkhangelsk, 163001
References
1. Kozlov I.A., Ovezov A.M., Pivovarova A.A. Reduction of risk of perioperative complications in case of cardiac comorbidity. Messenger of anesthesiology and resuscitation, 2020, vol. 17, no. 2, pp. 38–48. (In Russ.) Doi: 10.21292/2078-5658-2020-17-2-38-48.
2. Smetkin A.A., Hussain A., Fot E.V., Zakharov V.I., Isotova N.N. et al. Invasive monitoring of cardiac output by pulse wave transit time after aortocoronary bypass on the beating heart. Messenger of anesthesiology and resuscitation, 2016, vol. 13, no. 5, pp. 4–10. (In Russ.) Doi: 10.21292/2078-5658-2016-13-5-4-10.
3. Fot E.V., Isotova N.N., Smetkin A.A., Kirov M.Yu. Predict fluid responsiveness after off-pump coronary artery bypass grafting. Messenger of anesthesiology and resuscitation, 2018, vol. 15, no. 5, pp. 5–13. (In Russ.) Doi: 10.21292/2078-5658-2018-15-5-5-13.
4. Ball T. R., Tricinella A. P., Kimbrough B. A. et al. Accuracy of noninvasive estimated continuous cardiac output (esCCO) compared to thermodilution cardiac output: a pilot study in cardiac Patients // J Cardiothorac Vasc Anesth. – 2013. – Vol. 27, № 6. – P. 1128–1132. Doi: 10.1053/j.jvca.2013.02.019.
5. Bataille B., Bertuit M., Mora M. et al. Comparison of esCCO and transthoracic echocardiography for non-invasive measurement of cardiac output intensive care // Br J Anaesth. – 2012. – Vol. 109, № 5. – P. 879–886. Doi: 10.1093/bja/aes298.
6. Bein B., Renner J. Best practice & research clinical anaesthesiology: Advances in haemodynamic monitoring for the perioperative patient: Perioperative cardiac output monitoring // Best Pract Res Clin Anaesthesiol. – 2019. – Vol. 33, № 2. – P. 139–153. Doi: 10.1016/j.bpa.2019.05.008.
7. Critchley L. A., Lee A., Ho A. M. A critical review of the ability of continuous cardiac output monitors to measure trends in cardiac output // AnesthAnalg. – 2010. – Vol. 111, № 5. – P. 1180–1192. Doi: 10.1213/ANE.0b013e3181f08a5b.
8. Ganter M. T., Geisen M., Hartnack S. et al. Prediction of fluid responsiveness in mechanically ventilated cardiac surgical patients: the performance of seven different functional haemodynamic parameters // BMC Anesthesiol. – 2018. – Vol. 18, № 1. – P. 55. Doi: 10.1186/s12871-018-0520-x.
9. Ishihara H., Okawa H., Tanabe K. et al. A new non-invasive continuous cardiac output trend solely utilizing routine cardiovascular monitors // J Clin Monit Comput. – 2004. – Vol. 18, № 5–6. – P. 13–20. Doi:10.1007/s10877-005-2452-5.
10. Jozwiak M., Monnet X., Teboul J. L. Pressure waveform analysis // Anesth Analg. – 2018. – Vol. 126, № 6. – P. 1930–1933. Doi: 10.1213/ANE.0000000000002527.
11. Le Manach Y., Hofer C. K., Lehot J. J. et al. Can changes in arterial pressure be used to detect changes in cardiac output during volume expansion in the perioperative period? // Anesthesiology. – 2012. – Vol. 117, № 6. – P. 1165–1174. Doi: 10.1097/ALN.0b013e318275561d.
12. Monnet X., Marik P. E., Teboul J. L. Prediction of fluid responsiveness: an update // Ann Intensive Care. – 2016. – Vol. 6, № 1. – P. 111. Doi: 10.1186/s13613-016-0216-7.
13. Monnet X., Teboul J.-L. Dynamic Indices // Advanced Haemodynamic Monitoring: Basics and New Horizons. Kirov M., Kuzkov V., Saugel B., eds, Springer 2021. – P. 149–159.
14. Ochiai R., Kawamura Y., Sato N. et al. Non-invasive estimation of stroke volume index and its variation by using pulse wave transit time // Eur J Anaesthesiol. – 2010. – Vol. 27, № 47. – P. 65.
15. Oren-Grinberg A. The PiCCO Monitor // Int Anesthesiol Clin. – 2010. – Vol. 48, № 1. – P. 57–85. Doi: 10.1097/AIA.0b013e3181c3dc11.
16. Pouska J., Benes J. Pulse wave analysis // Advanced Haemodynamic Monitoring: Basics and New Horizons. Kirov M., Kuzkov V., Saugel B., eds, Springer 2021. – P. 69–78.
17. Raissuni Z., Zores F., Henriet O. et al. Can we obtain a noninvasive and continuous estimation of cardiac output? Comparison between three noninvasive methods // Int Heart J. – 2013. – Vol. 54, № 6. – P. 395–400. Doi: 10.1536/ihj.54.395.
18. Reuter D. A., Felbinger T. W., Schmidt C. et al. Stroke volume variation for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery // Intensive Care Med. – 2002. – Vol. 28, № 4. – P. 392–398. Doi: 10.1007/s00134-002-1211-z
19. Sakamoto N., Terada T., Ochiai R. Prediction of fluid responsiveness by means of stroke volume variation measured by pulse wave transit time-based cardiac output monitoring // Toho J Med. – 2020. – Vol. 6, № 1. – P. 41–47. Doi: 10.14994/tohojmed.2019-018.
20. Saugel B., Sessler D. I. Perioperative blood pressure management // Anesthesiology. – 2021. – Vol. 134, № 2. – P. 250–261. Doi: 10.1097/ALN.0000000000003610.
21. Scheeren T. W. L., Ramsay M. A. E. New developments in haemodynamic monitoring // J Cardiothorac Vasc Anesth. – 2019. – Vol. 33, Suppl 1. – P. 67–72. Doi: 10.1053/j.jvca.2019.03.043.
22. Smetkin A. A., Hussain A., Fot E. V. et al. Estimated continuous cardiac output based on pulse wave transit time in off-pump coronary artery bypass grafting: a comparison with transpulmonary thermodilution // J Clin Monit Comput. – 2017. – Vol. 31, № 2. – P. 361–370. Doi: 10.1007/s10877-016-9853-5.
23. Smetkin A. A., Hussain A., Kuzkov V. V. et al. Validation of cardiac output monitoring based on uncalibrated pulse contour analysis vs transpulmonary thermodilution during off-pump coronary artery bypass grafting // Br J Anaesth. – 2014. – Vol. 112, № 6. – P. 1024–1031. Doi: 10.1093/bja/aet489.
24. Suzuki T., Suzuki Y., Okuda J. et al. Cardiac output and stroke volume variation measured by the pulse wave transit time method: a comparison with an arterial pressure-based cardiac output system // J Clin Monit Comput. – 2019. – Vol. 33, № 3. – P. 385–392. Doi: 10.1007/s10877-018-0171-y.
25. Thonnerieux M., Alexander B., Binet C. et al. The ability of esCCO and ECOM monitors to measure trends in cardiac output during alveolar recruitment maneuver after cardiac surgery: a comparison with the pulmonary thermodilution method // Anesth Analg. – 2015. – Vol. 121, № 2. – P. 383–391. Doi: 10.1213/ANE.0000000000000753.
26. Vincent J. L., Pelosi P., Pearse R. et al. Perioperative cardiovascular monitoring of high-risk patients: a consensus of 12 // Crit Care. – 2015. – Vol. 19, № 1. – P. 224. Doi: 10.1186/s13054-015-0932-7.
27. Yamada T., Tsutsui M., Sugo Y. et al. Multicenter study verifying a method of noninvasive continuous cardiac output measurement using pulse wave transit time: a comparison with intermittent bolus thermodilution cardiac output // Anesth Analg. – 2012. – Vol. 115, № 1. – P. 82–7. Doi: 10.1213/ANE.0b013e31824e2b6c.
28. Yamashita K. Pulse-wave transit time with ventilator-induced variation for the prediction of fluid responsiveness // Acute Med Surg. – 2020. – Vol. 7, № 1. – P. 10. Doi: 10.1002/ams2.484.
29. Zhang Z., Lu B., Sheng X., Jin N. Accuracy of stroke volume variation in predicting fluid responsiveness: a systematic review and meta-analysis // J Anesth. – 2011. – Vol. 25, № 6. – P. 904–16. Doi: 10.1007/s00540-011-1217-1.
Review
For citations:
Volkov D.A., Fot E.V., Smetkin A.A., Semenkova T.N., Paromov K.V., Kuzkov V.V., Kirov M.Yu. Сardiac index and stroke volume variation estimated by the pulse wave transit time analysis in comparison with variables derived by pulse contour analysis after coronary revascularization on a beating heart. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2023;20(5):17-25. (In Russ.) https://doi.org/10.24884/2078-5658-2023-20-5-17-25