Preview

Messenger of ANESTHESIOLOGY AND RESUSCITATION

Advanced search

Use of Selective Hemosorption and Hemodiafiltration in a Patient with Toxic Rhabdomyolysis Complicated by Acute Kidney Injury

https://doi.org/10.21292/2078-5658-2022-19-6-78-85

Abstract

Rhabdomyolysis (RM) is a clinical and laboratory syndrome accompanied by systemic endotoxicosis, a consequence of myocyte destruction and is manifested by acute kidney injury (AKI). The use of extracorporeal detoxification in the early stages of AKI is currently not recognized due to the lack of proven effectiveness.

The objective: to demonstrate the effectiveness of selective hemoperfusion (HP) and hemodiafiltration (HDF) in a patient with toxic RM complicated by AKI.

Subjects and methods. The article presents a clinical observation of an 18-year-old patient after the use of 4-methylmethcathinone (mephedrone) with development of AKI. Clinical, laboratory, diagnostic, toxicological and instrumental methods of examination were used. HP and HDF were used together with standard intensive therapy.

Results. Combined use of HP and HDF was accompanied by regression of markers of endotoxicosis and AKI. A decrease in myoglobin level was noted by 50.3%, 80.3% and 94.1%, respectively, after the 1st and 2nd procedures and by the 5th day. CPK (creatine phosphokinase) decreased by 47.7%, 81.5% and 97.8%, respectively. Cystatin-C went down by 19.3%, 39.9% and 69.9%, respectively.

Conclusions. Earlier and justified use of HP and HDF was accompanied by a rapid improvement of clinical and laboratory parameters, which is reflected in the duration of ICU stay, hospital stay and the outcome of the disease in general.

About the Authors

S. V. Masolitin
N. I. Pirogov City Clinical Hospital no. 1
Russian Federation

Sergey V. Masolitin - Anesthesiologist and Emergency Physician, Anesthesiology and Intensive Care Department no. 1

8, Bld. 8, Leninsky Ave., Moscow, 119049



M. A. Magomedov
N. I. Pirogov City Clinical Hospital no. 1; Pirogov Russian National Research Medical University
Russian Federation

Marat A. Magomedov - Candidate of Medical Sciences, Deputy Chief Physician in Anesthesiology and Intensive Care

8, Bld. 8, Leninsky Ave., Moscow, 119049



T. G. Kim
N. I. Pirogov City Clinical Hospital no. 1
Russian Federation

Timur G. Kim - Anesthesiologist and Emergency Physician, Head of Anesthesiology and Intensive Care Department no. 1

8, Bld. 8, Leninsky Ave., Moscow, 119049



I. N. Tyurin
Kommunarka Moscow Multidisciplinary Clinical Center; Pirogov Russian National Research Medical University
Russian Federation

Igor N. Tyurin - Doctor of Medical Sciences, Deputy Chief Physician in Anesthesiology and Intensive Care

8, Sosenskiy Stan St., Kommunarka, Item of Sosenskoye, Moscow, 108814



V. M. Smetanina
Kommunarka Moscow Multidisciplinary Clinical Center
Russian Federation

Valeriya M. Smetanina - Anesthesiologist and Emergency Physician of Anesthesiology and Intensive Care Department

8, Sosenskiy Stan St., Kommunarka, Item of Sosenskoye, Moscow, 108814



E. Yu. Kalinin
N. I. Pirogov City Clinical Hospital no. 1
Russian Federation

Evgeniy Yu. Kalinin - Anesthesiologist and Emergency Physician of Anesthesiology and Intensive Care Department no. 1

8, Bld. 8, Leninsky Ave., Moscow, 119049



D. N. Protsenko
Kommunarka Moscow Multidisciplinary Clinical Center; Pirogov Russian National Research Medical University
Russian Federation

Denis N. Protsenko - Doctor of Medical Sciences, Chief Expert in Anesthesiology and Intensive Care, Head Physician

8, Sosenskiy Stan St., Kommunarka, Item of Sosenskoye, Moscow, 108814



References

1. Donskoy D.N. Rhabdomyolysis as a cause of acute kidney injury in childhood. Innovatsionnaya Nauka, 2021, no. 7, pp. 148-149. (In Russ.)

2. Masolitin S.V., Protsenko D.N., Tyurin I.N. et al. The use of combined extracorporeal detoxification in the treatment of toxic rhabdomyolysis complicated by acute kidney injury: single-center prospective randomized trial. Vestnik Intensivnoy Terapii Im A.I. Saltanova, 2022, no. 2, pp. 95-107. (In Russ.) doi.org/10.21320/1818-474X-2022-2-95-107.

3. Masolitin S.V., Protsenko D.N., Tyurin I.N. et al. A modern view on the use of extracorporeal detoxification methods in rhabdomyolysis (review). Obschaya Reanimatologiya, 2022, vol. 18, no. 3, pp. 59-68. (In Russ.) doi.org/10.15360/1813-9779-2022-3-59-68.

4. Fedorova A.A., Kutepov D.E., Zubarev A.V. et al. Rhabdomyolysis: what is new in diagnosis and treatment? Kremlevskaya Meditsina. Klinicheskiy Vestnik, 2020, no. 2, pp. 102-109. (In Russ.) doi: 10.26269/4n94-0746.

5. Ahmad S., Anees M., Elahi I. et al. Rhabdomyolysis leading to acute kidney injury. J. Coll. Phys. Surg. Pak., 2021, vol. 31, no. 2, pp. 235-237. doi: 10.29271/jcpsp.2021.02.235.

6. Ankawi G., Xie Y., Yang B. et al. What have we learned about the use of cytosorb adsorption columns? Blood Purif., 2019, vol. 48, no. 3, pp. 196-202. doi: 10.1159/000500013.

7. Beetham R. Biochemical investigation of suspected rhabdomyolysis. Ann. Clin. Biochem., 2000, vol. 37, no. 5, pp. 581-587. doi: 10.1258/0004563001899870.

8. Cabral B.M.I., Edding S.N., Portocarrero J.P. et al. Rhabdomyolysis. Dis. Mon., 2020, vol. 66, no. 8. doi: 10.1016/j.disamonth.2020.101015.

9. Chavez L.O., Leon M., Einav S. et al. Beyond muscle destruction: a systematic review of rhabdomyolysis for clinical practice. Crit. Care, 2016, vol. 20, no. 1, pp. 135. doi: 10.1186/s13054-016-1314-5.

10. Coco T.J., Klasner A.E. Drug-induced rhabdomyolysis. Curr. Opin. Pediatr., 2004, vol. 16, no. 2, pp. 206-210. doi: 10.1097/00008480-200404000-00017.

11. Donati G., Cappuccilli M., Di Filippo F. et al. The use of supra-hemodiafiltration in traumatic rhabdomyolysis and acute kidney injury: a case report. Case Rep. Nephrol. Dial., 2021, vol. 11, no. 1, pp. 26-35. doi: 10.1159/000507424.

12. Esposito P., Estienne L., Serpieri N. et al. Rhabdomyolysis-associated acute kidney injury. Am. J. Kidney Dis., 2018, vol. 71, no. 6, pp. A12-A14. doi: 10.1053/j.ajkd.2018.03.009.

13. Guzman N., Podoll A.S., Bell C.S. et al. Myoglobin removal using high-volume high-flux hemofiltration in patients with oliguric acute kidney injury. Blood Purif., 2013, vol. 36, no. 2, pp. 107-111. doi: 10.1159/000354727.

14. Hall A.P., Henry J.A. Acute toxic effects of 'Ecstasy' (MDMA) and related compounds: overview of pathophysiology and clinical management. Br. J. Anaesth., 2006, vol. 96, no. 6, pp. 678-685. doi: 10.1093/bja/ael078.

15. Heyne N., Guthoff M., Krieger J. et al. High cut-off renal replacement therapy for removal of myoglobin in severe rhabdomyolysis and acute kidney injury: a case series. Nephron Clin. Pract., 2012, vol. 121, no. 3-4, pp. 159-164. doi: 10.1159/000343564.

16. Holt S., Moore K. Pathogenesis of renal failure in rhabdomyolysis: the role of myoglobin. Exp. Nephrol., 2000, vol. 8, no. 2, pp. 72-76. doi: 10.1159/000020651.

17. Huerta-Alardín A.L., Varon J., Marik P.E. Bench-to-bedside review: Rhabdomyolysis an overview for clinicians. Crit. Care, 2005, vol. 9, no. 2, pp. 158-169. doi: 10.1186/cc2978.

18. Kasaoka S., Todani M., Kaneko T. et al. Peak value of blood myoglobin predicts acute renal failure induced by rhabdomyolysis. J. Crit. Care, 2010, vol. 25, no. 4, pp. 601-604. doi: 10.1016/j.jcrc.2010.04.002.

19. Khan F.Y. Rhabdomyolysis: a review of the literature. Neth. J. Med., 2009, vol. 67, no. 9, pp. 272-283. PMID: 19841484.

20. Kolovou G., Cokkinos P., Bilianou H. et al. Non-traumatic and non-drug-induced rhabdomyolysis. Arch. Med. Sci. Atheroscler Dis., 2019, vol. 4, pp. e252-e263. doi: 10.5114/amsad.2019.90152.

21. Kwiatkowska M., Chomicka I., Malyszko J. Rhabdomyolysis induced acute kidney injury an underestimated problem. Wiad. Lek., 2020, vol. 73, no. 11, pp. 2543-2548. PMID: 33454698.

22. Mannix R., Tan M.L., Wright R., Baskin M. Acute pediatric rhabdomyolysis: causes and rates of renal failure. Pediatrics, 2006, vol. 118, no. 5, pp. 2119-2125. doi:10.1542/peds.2006-1352.

23. Melli G., Chaudhry V., Cornblath D.R. Rhabdomyolysis: an evaluation of 475 hospitalized patients. Medicine (Baltimore), 2005, 84, no. 6, pp. 377-385. doi:10.1097/01.md.0000188565.48918.41.

24. Naka T., Jones D., Baldwin I. et al. Myoglobin clearance by super high-flux hemofiltration in a case of severe rhabdomyolysis: a case report. Crit. Care, 2005, vol. 2, pp. R90-R95. doi: 10.1186/cc3034.

25. Pasala S., Carmody J.B. How to use… serum creatinine, cystatin C and GFR. Arch. Dis. Child Educ. Pract. Ed., 2017, vol. 102, no. 1, pp. 37-43. doi: 10.1136/archdischild-2016-311062.

26. Petejova N., Martinek A. Acute kidney injury due to rhabdomyolysis and renal replacement therapy: a critical review. Crit. Care, 2014, vol. 18, no. 3, pp. 224. doi: 10.1186/cc13897.

27. Poorsarvi Tehrani P., Malek H. Early detection of rhabdomyolysis-induced acute kidney injury through machine learning approaches. Arch. Acad. Emerg. Med., 2021, vol. 9, no. 1, pp. e29. doi: 10.22037/aaem.v9i1.1059.

28. Prendergast B.D., George C.F. Drug-induced rhabdomyolysis--mechanisms and management. Postgrad Med. J., 1993, vol. 69, no. 811, pp. 333-336. doi: 10.1136/pgmj.69.811.333.

29. Ronco C. Extracorporeal therapies in acute rhabdomyolysis and myoglobin clearance. Crit. Care, 2005, vol. 9, no. 2, pp. 141-142. doi: 10.1186/cc3055.

30. Safari S., Yousefifard M., Hashemi B. et al. The value of serum creatine kinase in predicting the risk of rhabdomyolysis-induced acute kidney injury: a systematic review and meta-analysis. Clin. Exp. Nephrol., 2016, vol. 20, no. 2, pp. 153-161. doi: 10.1007/s10157-015-1204-1.

31. Scharf C., Liebchen U., Paal M. et al. Blood purification with a cytokine adsorber for the elimination of myoglobin in critically ill patients with severe rhabdomyolysis. Crit. Care, 2021, vol. 25, no. 1, pp. 41. doi: 10.1186/s13054-021-03468-x.

32. Schrezenmeier E.V., Barasch J., Budde K. et al. Biomarkers in acute kidney injury - pathophysiological basis and clinical performance. Acta Physiol. (Oxf), 2017, vol. 219, no. 3, pp. 554-572. doi: 10.1111/apha.12764.

33. Sousa A., Paiva J.A., Fonseca S. et al. Rhabdomyolysis: risk factors and incidence in polytrauma patients in the absence of major disasters. Eur. J. Trauma Emerg. Surg., 2013, vol. 39, no. 2, pp. 131-137. doi: 10.1007/s00068-012-0233-7.

34. Waldman W., Sein Anand J., Kabata P. The characteristics and outcomes of toxin-induced massive rhabdomyolysis. Int. J. Occup. Med. Environ. Health, 2020, vol. 33, no. 5, pp. 661-673. doi: 10.13075/ijomeh.1896.01532.

35. Weidhase L., de Fallois J., Haußig E. et al. Myoglobin clearance with continuous veno-venous hemodialysis using high cutoff dialyzer versus continuous veno-venous hemodiafiltration using high-flux dialyzer: a prospective randomized controlled trial. Crit. Care, 2020, vol. 24, no. 1, pp. 644. doi: 10.1186/s13054-020-03366-8.

36. Yang C. W., Li S., Dong Y., Paliwal N., Wang Y. Epidemiology and the Impact of Acute Kidney Injury on Outcomes in Patients with Rhabdomyolysis. J. Clin. Med., 2021, vol. 10, no. 9, pp. 1950. doi: 10.3390/jcm10091950. PMID: 34062839; PMCID: PMC8125267.

37. Zhang L., Kang Y., Fu P. et al. Myoglobin clearance by continuous venous-venous haemofiltration in rhabdomyolysis with acute kidney injury: a case series. Injury, 2012, vol. 43, no. 5, pp. 619-623. doi: 10.1016/j.injury.2010.08.031.

38. Zorova L.D., Pevzner I.B., Chupyrkina A.A. et al. The role of myoglobin degradation in nephrotoxicity after rhabdomyolysis. Chem. Biol. Interact., vol. 256, pp. 64-70. doi: 10.1016/j.cbi.2016.06.020.


Review

For citations:


Masolitin S.V., Magomedov M.A., Kim T.G., Tyurin I.N., Smetanina V.M., Kalinin E.Yu., Protsenko D.N. Use of Selective Hemosorption and Hemodiafiltration in a Patient with Toxic Rhabdomyolysis Complicated by Acute Kidney Injury. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2022;19(6):78-85. (In Russ.) https://doi.org/10.21292/2078-5658-2022-19-6-78-85



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)