Preview

Messenger of ANESTHESIOLOGY AND RESUSCITATION

Advanced search

Anesthesia, Sedation and Memory – Is Everything So Simple?

https://doi.org/10.21292/2078-5658-2022-19-4-80-88

Abstract

The study of neural plasticity and related memory functions is one of the fundamental fields in anesthesiology. Understanding this issue is very important both for the physician - the anesthesiologist-resuscitator, and for the patient. This review of the literature describes structures and processes of the central nervous system which in a sense are the target for the amnestic action of sedation and anesthesia medications. The possibilities of implicit and explicit memory formation depending on different levels of sedation and anesthesia are considered. Special attention is paid to the mechanism of action of GABAergic drugs on the processes of memory consolidation and reconsolidation.

About the Authors

V. O. Churakov
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Vyacheslav O. Churakov, Post Graduate Student of Anesthesiology and Intensive Care Department of Clinical Medicine Institute

8, Bd. 2, Trubetskaya St., Moscow, 119991



A. Yu. Zaitsev
Sechenov First Moscow State Medical University (Sechenov University); Russian Surgery Research Center Named After B. V. Petrovsky
Russian Federation

Andrey Yu. Zaitsev, Doctor of Medical Sciences, Associate Professor of Anesthesiology and Intensive Care Department of Clinical Medicine Institute

8, Bd. 2, Trubetskaya St., Moscow, 119991



K. V. Anokhin
Lomonosov Moscow State University
Russian Federation

Konstantin V. Anokhin, Doctor of Medical Sciences, Professor, Academician of RAS, Director of the Institute for Advanced Brain Research

1, Leninskie Gory, Moscow, 119991



K. V. Dubrovin
Sechenov First Moscow State Medical University (Sechenov University); Russian Surgery Research Center Named After B. V. Petrovsky
Russian Federation

Kirill V. Dubrovin, Candidate of Medical Sciences, Assistant of Anesthesiology and Intensive Care Department of Clinical Medicine Institute

8, Bd. 2, Trubetskaya St., Moscow, 119991



A. M. Bukinich
Lomonosov Moscow State University
Russian Federation

Aleksey M. Bukinich, Student of Psychology Faculty

1, Leninskie Gory, Moscow, 119991



G. D. Vzorin
Lomonosov Moscow State University
Russian Federation

Gleb D. Vzorin, Student of Psychology Faculty

1, Leninskie Gory, Moscow, 119991



V. V. Nurkova
Lomonosov Moscow State University
Russian Federation

Veronika V. Nurkova, Doctor of Psychological Sciences, Professor of General Psychology Department

1, Leninskie Gory, Moscow, 119991



References

1. Nikitin V.P., Solntseva S.V., Nikitin P.V. Protein synthesis inhibitors induce both memory impairment and its recovery. Behavioural Brain Research, 2019, vol. 15, no. 360, pp. 202-208. doi: 10.1016/j.bbr.2018.11.046.

2. Potekhina Yu.P., Filatov D.S. The role of the limbic system in the genesis of psychoviscerosomatic disorders. Rossiyskiy Osteopaticheskiy Journal, 2017, no. 1-2, pp. 78-87. (In Russ.) https://doi.org/10.32885/2220-0975-2017-1-2-78-87.

3. Aktas G., Sahin E., Aydogmus M.T. et al. The assessment of memory under total intravenous anesthesia. Braz. J. Anesthesiol., 2013, vol. 63, no. 3, pp. 301-306. doi: 10.1016/S0034-7094(13)70235-6.

4. Alkire M.T., Gruver R., Miller J. et al. Neuroimaging analysis of an anesthetic gas that blocks human emotional memory. Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 5, pp. 1722-1727. doi: 10.1073/pnas.0711651105.

5. Alkire M.T., Vazdarjanova A., Dickinson-Anson H. et al. Lesions of the basolateral amygdala complex block propofol-induced amnesia for inhibitory avoidance learning in rats. Anesthesiology, 2001, vol. 95, no. 3, pp. 708-715. doi: 10.1097/00000542-200109000-00025.

6. Campolongo P., Roozendaal B., Trezza V. et al. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory. Proc. Natl. Acad. Sci. USA, 2009, vol. 12, no. 106, pp. 4888-4893. doi: 10.1073/pnas.0900835106.

7. Celik F., Edipoglu I.S. Evaluation of preoperative anxiety and fear of anesthesia using APAIS score. Eur. J. Med. Res., 2018, vol. 1, no. 23, pp. 41. doi: 10.1186/s40001-018-0339-4.

8. Choukèr A., Kaufmann I., Kreth S. et al. Motion sickness, stress and the endocannabinoid system. PLoS ONE, 2010, vol. 5, no. 5, pp. e10752. doi: 10.1371/journal.pone.0010752.

9. Deeprose C., Andrade J., Varma S. et al. Unconscious learning during surgery with propofol anaesthesia. Br. J. Anaesth., 2004, vol. 92, no. 2, pp. 171-177. doi: 10.1093/bja/aeh054.

10. Dickinson-Anson H., Mesches M.H., Coleman K. et al. Bicuculline administered into the amygdala blocks benzodiazepine-lnduced amnesia. Behav. Neural Biol., 1993, vol. 1, no. 60, pp. 1-4. doi: 10.1016/0163-1047(93)90638-x.

11. Donoso J.R., Shmitz D., Maier N., Kempter R. Hippocampal ripple oscillations and inhibition-first network models: frequency dynamics and response to GABA modulators. J. Neurosci., 2018, vol. 12, no. 38, pp. 3124-3146. doi: 10.1523/JNEUROSCI.0188-17.2018.

12. Galarza Vallejo A., Kroes M.C.W., Rey E. et al. Propofol-induced deep sedation reduces emotional episodic memory reconsolidation in humans. Sci. Adv., 2019, vol. 3, no. 5, pp. eaav3801. doi: 10.1126/sciadv.aav3801.

13. Hauer D., Ratano P., Morena M. et al. Propofol enhances memory formation via an interaction with the endocannabinoid system. Anesthesiology, 2011, vol. 114, no. 6, pp. 1380-1388. doi: 10.1097/ALN.0b013e31821c120e.

14. Hayama H.R., Drumheller K.M., Mastromonaco M. et al. Event-related functional magnetic resonance imaging of a low dose of dexmedetomidine that impairs long-term memory. Anesthesiology, 2012, vol. 117, no. 5, pp. 981-995. doi: 10.1097/ALN.0b013e31826be467.

15. Kindt M., Soeter M. Pharmacologically induced amnesia for learned fear is time and sleep dependent. Nat. Commun., 2018, vol. 1, no. 9, pp. 1316. doi: 10.1038/s41467-018-03659-1.

16. Kroes M.C.W., Tendolkar I., Wingen G.A. et al. An electroconvulsive therapy procedure impairs reconsolidation of episodic memories in humans. Nat. Neurosci., 2014, vol. 2, no. 17, pp. 204-206. doi: 10.1038/nn.3609.

17. Liu J., White P.F. Electroencephalographic bispectral index correlates with lntraoperative recall and depth of propofol-induced sedation. Anesth. Analg., 1997, vol. 1, no. 84, pp. 185‒189. doi: 10.1097/00000539-199701000-00033.

18. Lormant F., Cornilleau F., Constantin P. et al. Role of the hippocampus in spatial memory in Japanese quail. Poult. Sci., 2019, vol. 0, pp. 1-6. doi: 10.3382/ps/pez507.

19. Makkar S.R., Zhang S.Q., Cranney J. Behavioral and neural analysis of gaba in the acquisition, consolidation, reconsolidation and extinction of fear memory. Neuropsychopharmacology, 2010, vol. 8, no. 35, pp. 1625-1652. doi: 10.1038/npp.2010.53.

20. Marco C., Sabrina B., Nagoth J.A. Awareness during emergence from anesthesia: Features and future research directions. World J. Clin. Cases, 2020, vol. 2, no. 8, pp. 245-254. doi: 10.12998/wjcc.v8.i2.245.

21. McCall N.M., Wojick J.A., Corder G. Anesthesia analgesia in the amygdala. Nat. Neurosci., 2020, vol. 7, no. 23, pp. 783-785. doi: 10.1038/s41593-020-0645-3.

22. McCombe K., Bogod D. Learning from the Law. A review of 21 years of litigation for pain during caesarean section. Anaesthesia, 2018, vol. 73, no. 2, pp. 223‒230.

23. Moon D.U., Esfahani-Bayerl N., Finke C. et al. Propofol modulates early memory consolidation in humans. Eneuro, 2020, vol. 3, no. 7, pp. 1‒29. doi: 10.1523/ENEURO.0537-19.2020.

24. Morena M., Berardi A., Peloso A. et al. Effects of ketamine, dexmedetomidine and propofol anesthesia on emotional memory consolidation in rats: Consequences for the development of post-traumatic stress disorder. Behav. Brain Res., 2017, no. 329, pp. 215-220. doi: 10.1016/j.bbr.2017.04.048.

25. Nagashima K., Zorumski C.F., Izumi Y. Propofol inhibits long-term potentiation but not long-term depression in rat hippocampal slices. Anesthesiology, 2005, vol. 103, no. 2, pp. 318-326. doi: 10.1097/00000542-200508000-00015.

26. Patel S., Wohlfeil E.R., Rademacher D.J. et al. The general anesthetic propofol increases brain N – arachidonylethanolamine (anandamide) content and inhibits fatty acid amide hydrolase. Br. J. Pharmacol., 2003, vol. 139, no. 5, pp. 1005-1013. doi: 10.1038/sj.bjp.0705334.

27. Peden C.J., Campbell M., Aggarwal G. Quality, safety, and outcomes in anaesthesia: what's to be done? An international perspective. Br. J. Anaesth., 2017, vol. 119, suppl. 1, pp. i5–i14. doi: 10.1093/bja/aex346. PMID: 29161393.

28. Pryor K.O., Reinsel N.A., Mechta M. et al. Visual P2–N2 complex and arousal at the time of encoding predict the time domain characteristics of amnesia for multiple intravenous anesthetic drugs in humans. Anesthesiology, 2010, vol. 2, no. 113, pp. 313-326.

29. Pryor K.O., Root J.C., Mehta M. et al. Effect of propofol on the medial temporal lobe emotional memory system: a functional magnetic resonance imaging study in human subjects. Br. J. Anaesth., 2015, vol. 115, suppl. 1, pp. 104-113. doi: 10.1093/bja/aev038.

30. Quan X., Yi J., Ye T.H. et al. Propofol and memory: a study using a process dissociation procedure and functional magnetic resonance imaging. Anaesthesia, 2013, vol. 68, no. 4, pp. 391-399. doi: 10.1111/anae.12147.

31. Quevedo J. Two time windows of anisomycin-induced amnesia for inhibitory avoidance training in rats: protection from amnesia by pretraining but not pre-exposure to the task apparatus. Learn. Mem., 1999, vol. 6, no. 6, pp. 600-607. doi: 10.1101/lm.6.6.600.

32. Rolls E.T. The cingulate cortex and limbic systems for emotion, action and memory. Brain Struct. Funct., 2019, vol. 9, no. 224, pp. 3001-3018. doi: 10.1007/s00429-019-01945-2.

33. Rossato J.I., Bonini J.S., Coitinho A.S. et al. Retrograde amnesia induced by drugs acting on different molecular systems. Behav. Neurosci., 2004, vol. 3, no. 118, pp. 563-568. doi: 10.1037/0735-7044.118.3.563.

34. Runyan J.D., Moore A.N., Dash P.K. Coordinating what we’ve learned about memory consolidation: revisiting a unified theory. Neurosci. Biobehav. Rev., 2019, vol. 100, pp. 77-84. doi: 10.1016/j.neubiorev.2019.02.010.

35. Samuel N., Taub A.H., Paz R. et al. Implicit aversive memory under anaesthesia in animal models: a narrative review. Br. J. Anaesth., 2018, vol. 121, no. 1, pp. 219-232. doi: 10.1016/j.bja.2018.05.046.

36. Schwabe L., Nader K., Pruessner J.C. Reconsolidation of human memory: brain mechanisms and clinical relevance. Biol. Psychiatry, 2014, vol. 4, no. 76, pp. 274-280. doi: 10.1016/j.biopsych.2014.03.008.

37. Segal S.K., Cotman C.W., Cahill L.F. Exercise-induced noradrenergic activation enhances memory consolidation in both normal aging and patients with amnestic mild cognitive impairment. J. Alzheimers. Dis., 2012, vol. 32, no. 4, pp. 1011-1018. doi: 10.3233/JAD-2012-121078.

38. Shinone Y., Higuchi S., Sasaki M. et al. Changes in brain activation induced by visual stimulus during and after propofol conscious sedation: a functional MRI study. NeuroReport, 2016, vol. 27, no. 17, pp. 1256-1260. doi: 10.1097/WNR.0000000000000688.

39. Stapleton C.L., Andrade J. An investigation of learning during propofol sedation and anesthesia using the process dissociation procedure. Anesthesiology, 2000, vol. 93, no. 6, pp. 1418-1425. doi: 10.1097/00000542-200012000-00013.

40. Sun M., Yuan R., Liu H. et al. The effects of repeated propofol anesthesia on spatial memory and long-term potentiation in infant rats under hypoxic conditions. Genes. Dis., 2020, vol. 2, no. 7, pp. 245-252. doi: 10.1016/j.gendis.2019.02.001.

41. Sun Y., Gooch H., Sah P. Fear conditioning and the basolateral amygdala. F1000Research, 2020, no. 9, pp. 53. doi: 10.12688/f1000research.21201.1.

42. Tian S.Y., Zou L., Quan X. et al. Effect of midazolam on memory: a study of process dissociation procedure and functional magnetic resonance imaging: Effect of midazolam on memory. Anaesthesia, 2010, vol. 65, no. 6, pp. 586-594. doi: 10.1111/j.1365-2044.2010.06343.x.

43. Tomaz C., Dickinson-Anson H., McGaugh J.L. Basolateral amygdala lesions block diazepam-induced anterograde amnesia in an inhibitory avoidance task. Proc. Natl. Acad. Sci. USA, 1992, vol. 89, no. 8, pp. 3615-3619. doi: 10.1073/pnas.89.8.3615.

44. Veselis R.A., Pryor K.O., Reinsel R.A. et al. Propofol and midazolam inhibit conscious memory processes very soon after encoding: an event-related potential study of familiarity and recollection in volunteers. Anesthesiology, 2009, vol. 2, no. 110, pp. 295-312. doi: 10.1097/ALN.0b013e3181942ef0.

45. Wei H., Xiong W., Yang S. et al. Propofol facilitates the development of long-term depression (LTD) and impairs the maintenance of long-term potentiation (LTP) in the CA1 region of the hippocampus of anesthetized rats. Neurosci. Lett., 2002, vol. 324, no. 3 (324), pp. 181–184. doi: 10.1016/s0304-3940(02)00183-0.

46. Weis F., Beiras-Fernandez A., Hauer D. et al. Effect of anaesthesia and cardiopulmonary bypass on blood endocannabinoid concentrations during cardiac surgery. Br. J. Anaesth., 2010, vol. 2, no. 105, pp. 139-144. doi: 10.1093/bja/aeq117.

47. Wood N.E., Rosasco M.L., Suris A.M. et al. Pharmacological blockade of memory reconsolidation in posttraumatic stress disorder: Three negative psychophysiological studies. Psychiatry Res., 2015, vol. 1-2, no. 225, pp. 31-39. doi: 10.1016/j.psychres.2014.09.005.

48. Zhang J., Zhang X., Jiang W. Propofol impairs spatial memory consolidation and prevents learning-induced increase in hippocampal matrix metalloproteinase-9 levels in rat. Neuroreport, 2013, vol. 24, no. 15, pp. 831-836. doi: 10.1097/WNR.0b013e328364fe69.

49. Zhang Y., Yu T., Yuan J., Yu B.W. The ventrolateral preoptic nucleus is required for propofol-induced inhibition of locus coeruleus neuronal activity. Neurol. Sci., 2015, vol. 12, no. 36, pp. 2177-2184. doi: 10.1007/s10072-015-2292-0.


Review

For citations:


Churakov V.O., Zaitsev A.Yu., Anokhin K.V., Dubrovin K.V., Bukinich A.M., Vzorin G.D., Nurkova V.V. Anesthesia, Sedation and Memory – Is Everything So Simple? Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2022;19(4):80-88. (In Russ.) https://doi.org/10.21292/2078-5658-2022-19-4-80-88



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)