Levosimendan Hemodynamic Effects Depending on the Outcome of Sepsis
https://doi.org/10.21292/2078-5658-2022-19-4-31-43
Abstract
The objective: to study hemodynamic and clinical effects of levosimendan depending on the clinical outcome in patients with sepsis and impaired cardiac pumping function.
Subjects and Methods. the retrospective study involved 31 patients of 52.7 ± 2.8 years old with sepsis or septic shock which were treated with levosimendan at the dose of 0.16 [0.15‒0.17] mg/kg (0.11 [0.1‒0.12] μg × kg-1 × min-1) on days 1–4 of ICU stay. The patients were divided into the following groups: Group 1 ‒ survivors (n = 19) and Group 2 – non-survivors (n = 12). Central hemodynamics was assessed through transpulmonary thermodilution. The differences were considered statistically significant at p < 0.05.
Results. Most of the hemodynamic parameters and vasopressors and inotropes doses had no differences between the groups before levosimendan administration. There were no differences in the cardiac index (3.8 ± 0.3 vs 3.5 ± 0.3 L/min/m2; p = 0.479) between the groups following levosimendan administration, however, Group 1 demonstrated the following parameters to be lower versus Group 2: central venous pressure (7 ± 0.7 vs 11 ± 1 mm Hg; p = 0.005), blood lactate (1 [0.9‒1.8] vs 2.4 [2.2‒3.3] mmol/L; p = 0.04), norepinephrine dosages (0.2 [0.15‒0.35] and 0.5 [0.4‒0.6] ng/kg/min; p = 0.023 ), global end-diastolic volume index (693 [688‒28] vs 870 [779‒961] mL/m2; p =0,0009) and the level of NT-proBNP (1,590 [1,080‒3,160] vs 35,000 [21,400‒35,000] pg/mL; p = 0,0001). Global heart ejection fraction (23 [21‒27] vs 15 [12‒20]%; p = 0.015) and heart function index (6 [5‒8] vs 3 [ 3-4] min-1; p = 0.003) ) were higher in Group 1 versus Group 2. APACHE II >19 (AUC 0.906; p < 0.0001), SOFA > 9 (AUC 0.805; p = 0.0002); heart rate > 114 min-1 (AUC 0.755; p = 0.0095), and index of total peripheral vascular resistance < 1,700 dyn × s × cm-5 × m2 (AUC 0.806; p = 0.001) before levosimendan administration were the independent predictors of death in patients treated with levosimendan.
Conclusion: non-survivors patients with sepsis had significantly higher APACHE II and SOFA scores, higher heart rate and lower index of total peripheral vascular resistance before levosimendan infusion. In survivors levosimendan infusion at a standard dose led to a significant improvement in the heart pumping function accompanying by global heart ejection fraction and heart function index increasing and NT-proBNP decreasing. In non-survivors such favorable central hemodynamics changes did not occur, although the cardiac index increased after inodilator administration. Further studies of levosimendan efficacy in patients with sepsis of varying severity are advisable. It is necessary to specify the indications and contraindications for levosimendan administration to patients with sepsis.
About the Authors
I. N. TyurinRussian Federation
Igor N. Tyurin, Candidate of Medical Sciences, Deputy Head Physician
7, Kasatkin St., Moscow, 129301
D. N. Protsenko
Russian Federation
Denis N. Protsenko, Candidate of Medical Sciences, Head Physician
7, Kasatkin St., Moscow, 129301
I. A. Kozlov
Russian Federation
Igor A. Kozlov, Doctor of Medical Sciences, Professor, Professor of Anesthesiology and Intensive, Faculty of Medical Professional Development
61/2, Schepkina St., Moscow, 29110
Phone: +7 (495) 631–04–55
References
1. Bautin A.E., Ksendikova A.V., Belolipetskiy S.S. et al. On the possibility of using pharmacological indices to predict the course of the post-operative period of cardiac surgery. Vestnik Intensivnoy Terapii Im. А.I. Saltanova, 2019, no. 2, pp. 66-74. (In Russ.) doi: 10.21320/1818-474X-2019-2-66-74.
2. Kozlov I.A., Tyurin I.N., Rautbart S.A. Early hemodynamic predictors of lethal outcomes of abdominal sepsis. Messenger of Anesthesiology and Resuscitation, 2018, vol. 15, no. 2, pp. 6-15. (In Russ.) doi.org/10.21292/2078-5658-2018-15-2-6-15.
3. Kuzkov V.V., Kirov M.Yu. Invasivny monitoring hemodinamiki v intensivnoy treapii i anesteziologii. [Invasive monitoring of hemodynamics in intensive care and anesthesiology]. 2nd ed., Arkhangelsk, Northern State Medical University, 2015, pp. 392. ISBN 978-5-91702-180-5.
4. Lomivorotov V.V., Boboshko V.A. Pleiotropic effects of levosimendan on the heart and other organs. Patologiya Krovoobrascheniya i Kardiokhirurgiya, 2017, vol. 21, no. 2, pp. 14-28. (In Russ.) doi.org/10.21688/1681-3472-2017-2-14-28.
5. Tyurin I.N., Rautbart S.A., Protsenko D.N. et al. N-terminal pro-B-type natriuretic peptide is a biomarker of myocardial stress in abdominal sepsis and septic shock. Patologiya Krovoobrascheniya i Kardiokhirurgiya, 2020, vol. 24, no. 1, pp. 65‒77. (In Russ.) doi: 10.21688/1681-3472-2020-1-65-77.
6. Angus D.C., van der Poll T. Severe sepsis and septic shock. N. Engl. J. Med., 2013, vol. 369, no. 9, pp. 840–851. doi: 10.1056/NEJMra1208623.
7. Belletti A., Benedetto U., Biondi-Zoccai G. et al. The effect of vasoactive drugs on mortality in patients with severe sepsis and septic shock. A network meta-analysis of randomized trials. J. Crit. Care, 2017, vol. 37, pp. 91–98. doi: 10.1016/j.jcrc.2016.08.010.
8. Belletti A., Castro M.L., Silvetti S. et al. The Effect of inotropes and vasopressors on mortality: a meta-analysis of randomized clinical trials. Br. J. Anaesth., 2015, vol. 115, no. 5, pp. 656‒675. doi: 10.1093/bja/aev284.
9. Bhattacharjee S., Soni K.D., Maitra S. et al. Levosimendan does not provide mortality benefit over dobutamine in adult patients with septic shock: A meta-analysis of randomized controlled trials. J. Clin. Anesth., 2017, vol. 39, pp. 67–72. doi: 10.1016/j.jclinane.2017.03.011.
10. Burkhoff D., Rich S., Pollesello P. et al. Levosimendan-induced venodilation is mediated by opening of potassium channels. ESC Heart Fail, 2021, vol. 8, no. 6, pp. 4454‒4464. doi: 10.1002/ehf2.13669.
11. Chang W., Xie J.F., Xu J.Y. et al. Effect of levosimendan on mortality in severe sepsis and septic shock: a meta-analysis of randomised trials. BMJ Open, 2018, vol. 8, no. 3, pp. e019338. doi: 10.1136/bmjopen-2017-019338.
12. Conti N., Gatti M., Raschi E. et al. Evidence and current use of levosimendan in the treatment of heart failure: filling the gap. Drug Des. Devel. Ther., 2021, vol. 15, pp. 3391‒3409. doi: 10.2147/DDDT.S295214.
13. Cunha G.J.L., Rocha B.M.L., Gomes R.V. et al. Levosimendan with other inotropes or vasopressors: Should you combine them? Am. J. Emerg. Med., 2020, vol. 38, no. 12, pp. 2723‒2726. doi: 10.1016/j.ajem.2020.03.059.
14. Dabrowski W., Siwicka-Gieroba D., Piasek E. et al. Successful combination of landiolol and levosimendan in patients with decompensated heart failure. Int. Heart J., 2020, vol. 61, no. 2, pp. 384‒389. doi: 10.1536/ihj.19-420.
15. Evans L., Rhodes A., Alhazzani W. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit. Care Med., 2021, vol. 49, no. 11, pp. e1063‒e1143. doi: 10.1097/CCM.0000000000005337.
16. Frommeyer G., Kohnke A., Ellermann C. et al. Experimental evidence for a severe proarrhythmic potential of levosimendan. Int. J. Cardiol., 2017, vol. 228, pp. 583‒587. doi: 10.1016/j.ijcard.2016.11.251.
17. Glinka L., Mayzner-Zawadzka E., Onichimowski D. et al. Levosimendan in the modern treatment of patients with acute heart failure of various aetiologies. Arch. Med. Sci., 2019, vol. 17, no. 2, pp. 296‒303. doi: 10.5114/aoms.2018.77055.
18. Gordon A.C., Perkins G.D., Singer M. et al. Levosimendan for the prevention of acute organ dysfunction in sepsis. N. Engl. J. Med., 2016, vol. 375, no. 17, pp. 1638‒1648. doi: 10.1056/NEJMoa1609409.
19. Hobai I.A., Edgecomb J., LaBarge K. et al. Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy. Shock, 2015, vol. 43, no. 1, pp. 3–15. doi: 10.1097/SHK.0000000000000261.
20. Hollenberg S.M., Singer M. Pathophysiology of sepsis-induced cardiomyopathy. Nat. Rev. Cardiol., 2021, vol. 18, no. 6, pp. 424‒434. doi: 10.1038/s41569-020-00492-2.
21. Kakoullis L., Giannopoulou E., Papachristodoulou E. et al. The utility of brain natriuretic peptides in septic shock as markers for mortality and cardiac dysfunction: a systematic review. Int. J. Clin. Pract., 2019, vol. 73, no. 7, pp. e13374. https://doi.org/10.1111/ijcp.13374.
22. Kumar A., Krieger A., Symeoneides S. et al. Myocardial dysfunction in septic shock: Part II. Role of cytokines and nitric oxide. J. Cardiothorac. Vasc. Anesth., 2001, vol. 15, no. 4, pp. 485–511. doI: 10.1053/jcan.2001.25003.
23. Liu D.H., Ning Y.L., Lei Y.Y. et al. Levosimendan versus dobutamine for sepsis-induced cardiac dysfunction: a systematic review and meta-analysis. Sci. Rep., 2021, vol. 11, no. 1, pp. 20333. doi: 10.1038/s41598-021-99716-9.
24. Morelli A., De Castro S., Teboul J.L. et al. Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Int. Care Med., 2005, vol. 31, no. 5, pp. 638‒644. doi: 10.1007/s00134-005-2619-z.
25. Nandhabalan P., Ioannou N., Meadows C. et al. Refractory septic shock: our pragmatic approach. Crit. Care, 2018, vol. 22, no. 1, pp. 215. doi: 10.1186/s13054-018-2144-4. PMID: 30231909.
26. Nieminen M.S., Fruhwald S., Heunks L.M. et al. Levosimendan: current data, clinical use and future development. Heart Lung Vessel, 2013, vol. 5, no. 4, pp. 227‒ 245. PMID: 24364017 PMCID: PMC3868185.
27. Pathak A., Lebrin M., Vaccaro A. et al. Pharmacology of levosimendan: inotropic, vasodilatory and cardioprotective effects. J. Clin. Pharm. Ther., 2013, vol. 38, no. 5, pp. 341‒349. doi: 10.1111/jcpt.12067.
28. Pierrakos C., Velissaris D., Franchi F. et al. Levosimendan in critical illness: a literature review. J. Clin. Med. Res., 2014, vol. 6, no. 2, pp. 75‒85. doi: 10.14740/jocmr1702w.
29. Pinto B. B., Rehberg S., Ertmer C. et al. Role of levosimendan in sepsis and septic shock. Curr. Opin. Anaesthesiol., 2008, vol. 21, no. 2, pp. 168‒177. doi: 10.1097/ACO.0b013e3282f43c56.
30. Ravikumar N., Sayed M.A., Poonsuph C.J. et al. Septic cardiomyopathy: from basics to management choices. Curr. Probl. Cardiol., 2021, vol. 46, no. 4, pp. 100767. doi: 10.1016/j.cpcardiol.2020.100767.
31. Rhodes A., Evans L.E., Alhazzani W. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Int. Care Med., 2017, vol. 43, no. 3, pp. 304‒377. doi: 10.1007/s00134-017-4683-6.
32. Sato R., Ariyoshi N., Hasegawa D. et al. Effects of inotropes on the mortality in patients with septic shock. J. Int. Care Med., 2021, vol. 36, no. 2, pp. 211‒219. doi: 10.1177/0885066619892218.
33. Scheeren T.W.L., Bakker J., Kaufmann T. et al. Current use of inotropes in circulatory shock. Ann. Int. Care, 2021, vol. 11, no. 1, pp. 21. doi: 10.1186/s13613-021-00806-8.
34. Sepsis: Recognition, Assessment and Early Management. National Guideline Centre (UK). London, National Institute for Health and Care Excellence (UK), 2016 Jul. PMID: 27441326.
35. Singer M., Deutschman C.S., Seymour C.W. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 2016, vol. 315, no. 8, pp. 801‒810. doi: 10.1001/jama.2016.0287. PMID: 26903338.
36. Torraco A., Carrozzo R., Piemonte F. et al. Effects of levosimendan on mitochondrial function in patients with septic shock: a randomized trial. Biochimie, 2014, vol. 102, pp. 166‒173. doi: 10.1016/j.biochi.2014.03.006.
37. Wang J., Wang X.T., Liu D.W. et al. Induction and deduction in sepsis-induced cardiomyopathy: five typical categories. Chin. Med. J. (Engl.), 2020, vol. 133, no. 18, pp. 2205‒2211. doi: 10.1097/CM9.0000000000000929.
38. Werdan K., Oelke A., Hettwer S. et al. Septic cardiomyopathy: hemodynamic quantification, occurrence, and prognostic implications. Clin. Res. Cardiol., 2011, vol. 100, no. 8, pp. 661-668. doi: 10.1007/s00392-011-0292-5.
39. Wilkman E., Kaukonen K.M., Pettilä V. et al. Association between inotrope treatment and 90-day mortality in patients with septic shock. Acta Anaesthesiol. Scand., 2013, vol. 57, no. 4, pp. 431‒442. doi: 10.1111/aas.12056.
40. Zangrillo A., Putzu A., Monaco F. et al. Levosimendan reduces mortality in patients with severe sepsis and septic shock: A meta-analysis of randomized trials. J. Crit. Care, 2015, vol. 30, no. 5, pp. 908‒913. doi: 10.1016/j.jcrc.2015.05.017.
41. Zhang Y., Khalid S., Jiang L. Diagnostic and predictive performance of biomarkers in patients with sepsis in an intensive care unit. J. Int. Med. Res., 2019, vol. 47, no. 1, pp. 44‒58. https://doi.org/10.1177/0300060518793791.
42. Zorn-Pauly K., Pelzmann B., Lang P. et al. Endotoxin impairs the human pacemaker current If. Shock, 2007, vol. 28, no. 6, pp. 655-661. PMID: 18092381.
43.
Review
For citations:
Tyurin I.N., Protsenko D.N., Kozlov I.A. Levosimendan Hemodynamic Effects Depending on the Outcome of Sepsis. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2022;19(4):31-43. (In Russ.) https://doi.org/10.21292/2078-5658-2022-19-4-31-43