Preview

Messenger of ANESTHESIOLOGY AND RESUSCITATION

Advanced search

Specific Parameters of Intraoperative Changes in the Hemostasis System during Liver Resection in Children

https://doi.org/10.21292/2078-5658-2022-19-3-41-48

Abstract

The objective: to determine severity of changes in the hemostasis system in children occurring at main stages of liver resection as well as the need for their intraoperative correction.

Subjects and Methods. A single-center prospective pilot study of coagulogram and rotational thromboelastometry values was conducted in 25 children aged 0–11 years old with hepatoblastoma after a course of chemotherapy according to the PRETEX IV regimen who underwent hemihepatectomy.

Results. There were no statistically significant differences in parameters of the ROTEM tests both when comparing groups and when comparing hemihepatectomy stages within the same age group of patients. At the beginning of the separation of the liver parenchyma INTEM: CT 200.00 (186.00; 238.00), CFT 88.00 (83.00; 139.00), MCF 54.00 (51.00; 61.00), ML 0.00 (0.00; 5.00) in Group I, CT 191.00 (179.00; 199.00), CFT 84.00 (79.00; 103.00), MCF 60.00 (58.00; 64.00), 4,00 (3.00; 9.00) in Group II, respectively, p > 0.05. After separation of the liver parenchyma INTEM: CT 201.00 (161.00; 237.50), CFT 93.00 (95.00; 112.00), MCF 54.00 (52.50; 59.50), ML 6.00 (2.00; 10.00) in Group I, CT 229.00 (201.00; 285.00), CFT 93.00 (78.00; 177.00), MCF 59.00 (49.00; 60.00), ML 5.00 (5.00; 10.00) in Group II, respectively, p > 0.05.

Conclusion. After chemotherapy courses, children aged 0–11 years suffering from hepatoblastoma, maintain normal functional activity of the hemostasis system at all stages of surgical treatment. In children under 11 years of age, routine hemostasis correction with blood products and prothrombin complex factor concentrate is not required during the main stages of hemihepatectomy.

About the Authors

D. I. Novikov
Russian Surgery Research Center Named after B. V. Petrovsky
Russian Federation

Denis I. Novikov, Anesthesiologist and Emergency Physician of Anesthesiology and Intensive Care Department no. I.

2, Abrikosovsky Lane, Moscow, 119991



A. Yu. Zaitsev
Russian Surgery Research Center Named after B. V. Petrovsky; Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Andrey Yu. Zaitsev, Doctor of Medical Sciences, Head, Chief Researcher of Anesthesiology and Intensive Care Department no. I.

2, Abrikosovsky Lane, Moscow, 119991



K. V. Dubrovin
Russian Surgery Research Center Named after B. V. Petrovsky; Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Kirill V. Dubrovin, Candidate of Medical Sciences, Senior Researcher of Anesthesiology and Intensive Care Department no. I.

2, Abrikosovsky Lane, Moscow, 119991



E. K. Bespalov
Russian Surgery Research Center Named after B. V. Petrovsky
Russian Federation

Evgeniy K. Bespalov, Anesthesiologist and Emergency Physician of Anesthesiology and Intensive Care Department no. I.

2, Abrikosovsky Lane, Moscow, 119991



A. V. Filin
Russian Surgery Research Center Named after B. V. Petrovsky
Russian Federation

Andrey V. Filin, Doctor of Medical Sciences, Head of Liver Transplantation Department.

2, Abrikosovsky Lane, Moscow, 119991



References

1. Zhalyalov A.S., Balandina A.N., Kuprash A.D. et al. The overview of fibrinolysis system contemporary concepts and of its disorders diagnostic methods. Voprosy Gematologii/Onkologii i Immunopatologii v Pediatrii, 2017, no. 1 (16), pp. 69-82. (In Russ.)

2. Zabolotskikh I.B., Sinkov S.V., Lebedinskiy K.M. et al. Perioperative management of patients with hemostasis system disorders. Anesteziologiya i Reanimatologiya, 2018, no. 1(2), pp. 58-81. (In Russ.)

3. Nosovskiy A.M., Pikhlak A.E., Logachev V.A. et al. Small data statistic analysis in medical studies. Rossiyskiy Meditsinskiy Journal, 2013, no. 6, pp. 57-60. (In Russ.)

4. Roytman E.V. Know-how laboratory diagnosis of blood coagulation conditions. Rossiyskiy Journal Detskoy Onkologii I Gematologii, 2015, no. 1, pp. 27-35. (In Russ.)

5. Roytman E.V. The use of tranexamic acid in pediatric practice. Klinicheskaya Farmakologiya I Farmakoterapiya, 2009, no. 3 (8), pp. 21-27. (In Russ.)

6. Timerbulatov Sh.V., Fayazov R.R., Smyr R.A. et al. Determination of volume and degree of acute blood loss. Meditsinsky Vestnik Bashkirostana, 2012, no. 2 (7), pp. 69-72. (In Russ.)

7. Behem C.R., Gräßler M.F., Trepte C.J.C. et al. Central venous pressure in liver surgery : A primary therapeutic goal or a hemodynamic tessera? Der. Anaesthesist., 2018, no. 10 (67), pp. 780–789. doi:10.1007/s00101-018-0482-x.

8. Feng J., He Y., Wei L. et al. Assessment of survival of pediatric patients with hepatoblastoma who received chemotherapy following liver transplant or liver resection. JAMA Network Open, 2019, no. 10 (2), pp. e1912676. doi:10.1001/jamanetworkopen.2019.12676.

9. Field A., Poole T., Bamber J.H. ROTEM(®) sigma reference range validity. Anaesthesia, 2019, no. 8 (74), pp. 1062–1071. doi:10.1111/anae.14711.

10. Görlinger K. ROTEM-guided bleeding management in complex pediatric surgery and obstetrics. Hospital del Nino, San Borja, Lima, Peru. 2018, doi:10.13140/RG.2.2.14719.30885.

11. Hafberg E., Borinstein S.C., Alexopoulos S.P. Contemporary management of hepatoblastoma. Current Opinion in Organ Transplantation, 2019, no. 2 (24), pp. 113–117. doi:10.1097/MOT.0000000000000618.

12. Henry Z., Northup P.G. The rebalanced hemostasis system in end-stage liver disease and its impact on liver transplantation. Int. Anesth. Clin., 2017, no. 2 (55), pp. 107–120. doi:10.1097/AIA.0000000000000139.

13. Hughes M.J., Ventham N.T., Harrison E.M. et al. Central venous pressure and liver resection: a systematic review and meta-analysis. HPB: The Official Journal of the International Hepato Pancreato Biliary Association, 2015, no. 10 (17), pp. 863–871. doi:10.1111/hpb.12462.

14. Kenet G., Barg A.A., Nowak-Göttl U. Hemostasis in the very young. Seminars In Thrombosis And Hemostasis, 2018, no. 7 (44), pp. 617–623. doi:10.1055/s-0038-1660852.

15. Kenet G., Cohen O., Bajorat T. et al. Insights into neonatal thrombosis. Thrombosis Res., 2019, no. 181, (suppl. 1), pp. S33–S36. doi:10.1016/S0049-

16. (19)30364-0.

17. Levy J.H., Koster A., Quinones Q.J. et al. Antifibrinolytic therapy and perioperative considerations. Anesthesiology, 2018, no. 128 (3), pp. 657–670. doi: 10.1097/ALN.0000000000001997.

18. Li J.-P., Kusche-Gullberg M. Heparan sulfate: biosynthesis, structure, and function. Intern. Rev. Cell Mol. Biol., 2016, vol. 325, pp. 215–273. doi:10.1016/bs.ircmb.2016.02.009.

19. Nacoti M., Corbella D., Fazzi F. et al. Coagulopathy and transfusion therapy in pediatric liver transplantation. World J. Gastroenterol., 2016, no. 6 (22), pp. 2005–2023. doi:10.3748/wjg.v22.i6.2005.

20. Wang F., Sun D., Zhang N. et al. The efficacy and safety of controlled low central venous pressure for liver resection: a systematic review and meta-analysis. Gland. Surg., 2020, no. 2 (9), pp. 311–320. doi:10.21037/gs.2020.03.07.

21. Whiting D., DiNardo J.A. TEG and ROTEM: technology and clinical applications. Am. J. Hematol., 2014, no. 2 (89), pp. 228–232. doi:10.1002/ajh.23599.

22. Zulueta M.M.L., Chyan C.L., Hung S.C. et al. Structural analysis of synthetic heparan sulfate oligosaccharides with fibroblast growth factors and heparin-binding hemagglutinin. Curr. Opin. Struct. Biol., 2018, no. 50, pp. 126–133. doi:10.1016/j.sbi.2018.03.003.


Review

For citations:


Novikov D.I., Zaitsev A.Yu., Dubrovin K.V., Bespalov E.K., Filin A.V. Specific Parameters of Intraoperative Changes in the Hemostasis System during Liver Resection in Children. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2022;19(3):41-48. (In Russ.) https://doi.org/10.21292/2078-5658-2022-19-3-41-48



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)