CONTINUOUS MONITORING OF LACTATE AND GLUCOSE DURING THE INTEGRAL SURGICAL MANAGEMENT OF ACQUIRED COMBINED HEART VALVULAR DISEASES AND ISCHEMIC HEART DISEASE
https://doi.org/10.21292/2078-5658-2015-12-6-4-15
Abstract
Lactate and glucose of the venous blood were continuously monitored using the Eirus system for intravascular microdialysis with 20 patients operated for complex non-heritable valvular heart disease and ischemic heart disease. The lactate and glucose concentrations, measured by microdialysis techniques, were correlated to the values of arterial blood (rho = 0.917, p < 0.0001 for lactate and rho = 0.693, p < 0.0001 for glucose, respectively). According to the Bland-Altman test results the mean difference between the values measured with Eirus system and that in arterial blood gases made 0.09 ± 1.1 mmol/L for lactate and -0.1 ± 4.65 mmol/L (M ± 1.96 SD) for glucose, correspondingly. Thus, the technique of intravascular microdialysis allows with acceptable accuracy continuous monitoring of lactate and glucose concentrations in median vein under combined high-risk cardiac surgery and timely diagnostics of the values variation in the perioperative period.
About the Authors
P. I. Len'kinRussian Federation
A. A. Smyotkin
Russian Federation
A. Khusseyn
Russian Federation
A. I. Len'kin
Russian Federation
K. V. Paromov
Russian Federation
A. A. Ushakov
Russian Federation
M. A. Krygina
Russian Federation
M. Yu. Kirov
Russian Federation
References
1. Gaydukov K.M., Lyon'kin А.I., Kuz'kov V.V. et al. Oxygen saturation of central venous blood hemoglobin and the venous arterial blood gradient of PCO2 after combined surgeries of the cardiac valve. Anesteziol. i Reanimatol., 2011, no. 3, pp. 19-21. (In Russ.)
2. Len'kin А.I., Zakharov V.I., Paromov K.V. et al. Correlation between cerebral oxygenation with determinants of oxygen delivery and consumption in integral surgical management of acquired cardiac failure. Sb. dokl. i tez. 4-go Belomorskogo simpoziuma, Аrkhangel'sk, 23-24 iyunya 2011. [Abst. book of the 4th White Sea Symposium, Arkhangelsk, June 23-24, 2011]. pp. 5-6. (In Russ.)
3. Len'kin А.I., Paromov K.V., Smyotkin А.А. et al. Management of hemodynamics disorders in integral surgical treatment of acquired cardiac failure. Obsch. Reanimatol., 2011, no. 7, pp. 10-17. (In Russ.)
4. Paromov K.V., Lyon'kin А.I., Smyotkin А.А. et al. Targeted management of hemodynamics disorders in integral surgical management of acquired valvular cardiac failure. Serd.-Sosud. Zabolevaniya. Bulleten' NTS SSKH im. A.N. Bakuleva RAMN, 2011, no. 12 (6), pp. 194. (In Russ.)
5. Shmyrev V.А., Ponomarev D.N., Shakhin D.G. et al. System inflammatory response when using distant ischemic pre-conditioning in cardiosurgical patients. Vestnik Anasteziol. i Reanimatol., 2014, no. 3, pp. 10-17. (In Russ.)
6. Abu-Omar Y., Ratnatunga C. Cardiopulmonary bypass and renal injury. Perfusion, 2006, vol. 21, pp. 209–213.
7. Bakker J., Nijsten M.W.N., Jansen T.C. Clinical use of lactate monitoring in critically ill patients. Ann. Intens. Care, 2013, vol. 3, pp. 12.
8. Calvin S.H., Ng S.W., Arifi A.A. et al. Inflammatory response to pulmonary ischemia-reperfusion injury. Surg. Today, 2006, vol. 36, pp. 205–214.
9. Clark S.C. Lung injury after cardiopulmonary bypass. Perfusion, 2006, vol. 21, pp. 225-228.
10. Critchell C.D., Savarese V., Callahan A. et al. Accuracy of bedside capillary blood glucose measurements in critically ill patients. Intens. Care Med., 2007, vol. 33, pp. 2079-2084.
11. Dres M., Monnet X., Teboul J.-L. Hemodynamic management of cardiovascular failure by using PCO2 difference. J. Clin. Monit. Comput., 2012, vol. 26, pp. 367-374.
12. Egi M., Bellomo R. Reducing glycemic variability in intensive care unit patients: a new therapeutic target? J. Diabetes. Sci. Technol., 2009, vol. 3, pp. 1302-1308.
13. Egi M., Bellomo R., Stachowski E. et al. Hypoglycemia and outcome in critically ill patients. Mayo. Clin. Proc., 2010, vol. 85, no. 3, pp. 217-224.
14. Futier E., Robin E., Jabaudon M. Central venous O2 saturation and venous-to-arterial CO2 difference as complementary tools for goal-directed therapy during high-risk surgery. Crit. Care, 2010, vol. 14, pp. 193,
15. Gandhi G.Y., Nuttall G.A., Abel M.D. et al. Intra-operative hyperglycemia and perioperative outcomes in cardiac surgery patients. Mayo. Clin. Proc., 2005, vol. 80, pp. 862-866.
16. Goepfert M.S., Reuter D.A., Akyol D. et al. Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intens. Care Med., 2007, vol. 33, pp. 96-103.
17. Goepfert M.S., Richter H.P., Zu Eulenburg C. et al. Individually optimized hemodynamic therapy reduces complications and length of stay in the intensive care unit: a prospective, randomized controlled trial. Anesthesiology, 2013, vol. 119, pp. 824-836.
18. Guvener M., Pasaoglu I., Demircin Met al. Perioperative hyperglycemia is a strong correlate of postoperative infection in type II diabetic patients after coronary artery bypass grafting. Endocr. J., 2002, vol. 49, pp. 531-537.
19. Hicks J.L. Cardiac Surgery. J. Am. Coll. Surg., 1998, vol. 186, pp. 129-133.
20. Hirai S. Systemic inflammatory response syndrome after cardiac surgery under cardiopulmonary bypass. Ann. Thorac. Cardiovasc. Surg., 2003, vol. 9, pp. 365-370.
21. Hoedemaekers C.W., Klein Gunnewiek J.M., Prinsen M.A. et al. Accuracy of bedside glucose measurement from three glucometers in critically ill patients. Crit. Care Med., 2008, vol. 36, pp. 3062-3066.
22. Holmes J.H., Connolly N.C., Paull D.L. et al. Magnitude of the inflammatory response to cardiopulmonary bypass and its relation to adverse clinical outcomes. Inflamm. Res., 2002, vol. 51, pp. 579-586.
23. Jones A.E., Shapiro N.I., Trzeciak S. et al. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA, 2010, vol. 303, pp. 739-746.
24. Kanji S., Buffie J., Hutton B. et al. Reliability of point-of-care testing for glucose measurement in critically ill adults. Crit.Care Med., 2005, vol. 33, pp. 2778-2785.
25. Kennedy D.J., Butterworth J.F. Endocrine function during and after cardiopulmonary bypass: recent observations. J. Clin. Endocrin. Metabol., 1994, vol. 78, pp. 997-1002.
26. Kirov M.Y., Kuzkov V.V., Molnar Z. Perioperative haemodynamic therapy. Curr. Opin. Crit. Care, 2010, vol. 16, pp. 384-392.
27. Kirov M.Y., Lenkin A.I., Kuzkov V.V. et al. Single transpulmonary thermodilution in off-pump coronary artery bypass grafting: haemodynamic changes and effects of different anaesthetic techniques. Acta Anaesthesiol Scand., 2007, vol. 51, pp. 426-433.
28. Krinsley J.S. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit. Care Med., 2008, vol. 36, no. 11, pp. 3008-3013.
29. Krinsley J.S., Grover A. Severe hypoglycemia in critically ill patients: risk factors and outcomes. Crit. Care Med., 2007, vol. 35, no. 10, pp. 2262-2267.
30. Lenkin A.I., Zaharov V.I., Lenkin P.I. et al. Normothermic cardiopulmonary bypass increases cerebral tissue oxygenation during combined valve surgery: a single-centre, randomized trial. Interact.Cardio Vascular and Thoracic Surgery, 2013, vol. 16, pp. 595-601.
31. Lenkin A.I., Zaharov V.I., Lenkin P.I. et al. Monitoring of anesthetic depth during surgical correction of acquired valvular disorders: single center, randomized trial. J. Cardiothorac. Vasc. Anesth., 2014, vol. 28, pp. 301-307.
32. Lenkin A.I., Kirov M.Y., Kuzkov V.V. et al. Comparison of goal-directed hemodynamic optimization using pulmonary artery catheter and transpulmonary thermodilution in combined valve repair: a randomized clinical trial. Crit.Care Res. Pract., 2012, article ID 821218. doi:10.1155/2012/821218.
33. Looney Y., Quinton P. Mitral valve surgery. continuing education in anaesthesia. Critical. Care & Pain., 2005, pp. 1-4.
34. Mechanick J.I., Handelsman Y., Bloomgarden Z.T. Hypoglycemia in the intensive care unit. Curr. Opin Clin. Nutr. Metab. Care, 2007, vol. 10, no. 2, pp. 193-196.
35. Möller F., Liska J., Eidhagen F. et al. Intravascular microdialysis as a method for measuring glucose and lactate during and after cardiac surgery. J. Diabetes Sci. Technol., 2011, vol. 5, pp. 1099-1107.
36. Nguyen H.B., Rivers E.P., Knoblich B.P. et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit. Care Med., 2004, vol. 32, pp. 1637-1642.
37. Ohri S. K., Velissaris T. Gastrointestinal dysfunction following cardiac surgery. Perfusion, 2006, vol. 21, pp. 215-223.
38. Perz S., Uhlig T., Kohl M. et al. Low and «supranormal» central venous oxygen saturation and markers of tissue hypoxia in cardiac surgery patients: a prospective observational study. Intens. Care Med., 2011, vol. 37, pp. 52-59.
39. Petersen J.R., Graves D.F., Tacker D.H. et al. Comparison of POCT and central laboratory blood glucose results using arterial, capillary, and venous samples from MICU patients on a tight glycemic protocol. Clin. Chim. Acta., 2008, vol. 396, pp. 10-13.
40. Pope J.V., Jones A.E., Gaieski D.F. et al. Multicenter study of central venous oxygen saturation as a predictor of mortality in patients with sepsis. Ann. Emerg. Med., 2010, vol. 55, pp. 40-46.
41. Prêtre R., Turina M.I. Valve diseases: Cardiac valve surgery in octogenarian. Heart, 2000, vol. 83, pp. 116-121.
42. Robin E., Futier E., Pires O. et al. Central venous-to-arterial CO2 difference as a prognostic tool in high-risk surgical patients. Crit.Care, 2015, vol. 19, pp. 227.
43. Schierenbeck F., Nijsten M.W.N., Franco-Cereceda A. et al. Introducing intravascular microdialysis for continuous lactate monitoring in patients undergoing cardiac surgery: a prospective observational study. Crit.Care, 2014, vol. 18, pp. 56.
44. Schierenbeck F., Nijsten M.W.N., Franco-Cereceda A. et al. Evaluation of a continuous blood glucose monitoring system using central venous microdialysis. J. Diabetes. Sci. Tehnol., 2012, vol. 6, pp. 1366-1371.
45. Smetkin A.A., Hussain A., Kuzkov V.V. et al. Validation of cardiac output monitoring based on uncalibrated pulse contour analysis vs transpulmonary thermodilution during off-pump coronary artery bypass grafting. Br.J.Anaesth., 2014, vol. 112, pp. 1024-1031.
46. Smetkin A.A., Kirov M.Y., Kuzkov V.V. et al. Single transpulmonary thermodilution and continuous monitoring of central venous oxygen saturation during off-pump coronary surgery. Acta Anaesth. Scand., 2009, vol. 53, pp. 505-514.
47. Textoris J., Fouché L., Wiramus S. et al. High central venous oxygen saturation in the latter stages of septic shock is associated with increased mortality. Crit. Care, 2011, vol. 15, pp. 176.
48. Turina M.I. Future of heart valve surgery. Eur.J.Cardiothorac. Surg., 2004, vol. 26, pp. 8-13.
49. Turina J., Stark T., Seifert B. et al. Predictors of long-term outcome after combined aortic and mitral valve surgery. Circulation, 1999, vol. 100, pp. 48-53.
50. Vallee F., Vallet B., Mathe O. et al. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intens. Care Med., 2008, vol. 34, pp. 2218-2225.
51. Van den Berghe G. How does blood glucose control with insulin save lives in intensive care?. J. Clin. Invest., 2004, vol. 114, no. 9, pp. 1187-1195.
52. Wan S., LeClerc J.-L., Vincent J-L. Inflammatory response to cardiopulmonary bypass: mechanisms involved and possible therapeutic strategies. Chest, 1997, vol. 112, pp. 676-692.
53. Weil M.H., Michaels S., Rackow E.C. Comparison of blood lactate concentrations in central venous, pulmonary artery, and arterial blood. Crit. Care Med., 1987, vol. 15, pp. 489-490.
54. Younger J.G., Falk J.L., Rothrock S.G. Relationship between arterial and peripheral venous lactate levels. Acad. Emerg. Med., 1996, vol. 3, pp. 730-734.
Review
For citations:
Len'kin P.I., Smyotkin A.A., Khusseyn A., Len'kin A.I., Paromov K.V., Ushakov A.A., Krygina M.A., Kirov M.Yu. CONTINUOUS MONITORING OF LACTATE AND GLUCOSE DURING THE INTEGRAL SURGICAL MANAGEMENT OF ACQUIRED COMBINED HEART VALVULAR DISEASES AND ISCHEMIC HEART DISEASE. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2015;12(6):4-15. (In Russ.) https://doi.org/10.21292/2078-5658-2015-12-6-4-15