Preview

Messenger of ANESTHESIOLOGY AND RESUSCITATION

Advanced search

Microcirculation Disorders in Patients with Severe COVID-19

https://doi.org/10.21292/2078-5658-2021-18-4-7-19

Abstract

Impaired microcirculation due  to endothelial dysfunction in COVID-19  is considered  to be  the most important link in the pathogenesis of this disease. However, due  to  the  complexity of its  instrumental  assessment  in critically ill patients,  the data available  in  the  literature on specific manifestations of endothelial dysfunction are very contradictory.

The objective:  to determine  the most characteristic capillaroscopic signs of microvascular disorders and  to assess  the  state of microcirculation regulation in patients with severe COVID-19.

Subjects  and Methods. When admitted  to  the  intensive  care unit,  60 patients with  COVID-19  and  12  patients with chronic cardiovascular pathology without COVID-19 (Comparison Group) were examined. All patients underwent microscopy of the microcirculatory bed of finger nail bed; the following parameters were assessed: diameters of the venous, arterial and transitional parts of capillaries, height of capillary loops, density of capillaries per  1 mm of the  length of the perivascular zone,  the average  linear velocity of capillary blood  flow (LVCBF), and  thickness of the perivascular zone. The presence of avascular zones,  the number of capillaries in the visualized field with circulating aggregates in the lumen, and the shape of capillaries were taken into account.  In addition, an occlusion test using laser Doppler flowmetry was performed  in 32 patients with COVID-19. The maximum post-occlusive increase in blood flow at the moment of cuff deflation was assessed, as well as changes in the mean value of post-occlusive blood flow relative to the baseline within 3 minutes after cuff deflation.

Results.  In 53 (88.3%) patients with COVID-19, abnormalities corresponding to chronic microcirculatory changes in the form of predominance of pathological capillary forms were detected. Microaggregates in the lumen of capillaries and decreased linear velocity of blood flow were revealed in 100% of cases. When comparing groups of patients with different outcomes, statistically significant differences were revealed between the LVCBF parameters (in the survivors -  354.35 ± 44.78 pm/sec, in the deceased - 278.4 ± 26.59 pm/sec), as well as between the values of the perivascular zones thickness  (95.35  ±  15.96 microns versus  159.93 ±  19.90 microns). The results of the post-occlusion  test revealed  a significant difference between the groups in terms of the maximum post-occlusion gain (39.42 ± 3.85 BPU in the group with a favorable outcome, 27.69 ± 3.19 BPU in the group with an unfavorable outcome, 47.23 ±  1.78 BPU in the control group). In both groups, there was no increase in this parameter relative to the initial blood flow. At the same time, in the control group, the average index of post-occlusive blood flow was higher than the initial level.

Conclusions. Acute microcirculation disorders with decreased linear velocity of capillary blood flow, circulation of aggregates, increased thickness of the perivascular zone were detected in all patients with severe COVID-19 but especially in those with unfavorable outcomes. Vascular tone regulation disorders were manifested by the absence of reactive hyperemia in response to acute ischemia, as well as a decrease in maximal flow-induced increase. These changes fit into the concept of endothelial dysfunction. Signs of chronic microcirculation disorders in most patients increase the risk of severe COVID-19.

About the Authors

E. E. Ladozhskaya-Gapeenko
Pavlov First Saint Petersburg State Medical University
Russian Federation

Ladozhskaya-Gapeenko Ekaterina E., Emergency Physician of Anesthesiology and Intensive Care Unit no. 2, Junior Researcher of Research Clinical Center of Anesthesiology and Intensive Care

6-8, Lva Tolstogo St., St. Petersburg, 197022



K. N. Khrapov
Pavlov First Saint Petersburg State Medical University
Russian Federation

Khrapov Kirill N., Doctor of Medical Sciences, Professor of Anesthesiology and Intensive Care Department, Chief Researcher of Anesthesiology Department of Research Clinical Center of Anesthesiology and Intensive Care

6-8, Lva Tolstogo St., St. Petersburg, 197022



Yu. S. Polushin
Pavlov First Saint Petersburg State Medical University
Russian Federation

Polushin Yury S., Academician of RAS, Professor, Head of Anesthesiology and Intensive Care Department, Head of Research Clinical Center of Anesthesiology and Intensive Care Pavlov First Saint Petersburg State Medical University

6-8, Lva Tolstogo St., St. Petersburg, 197022



I. V. Shlyk
Pavlov First Saint Petersburg State Medical University
Russian Federation

Shlyk Irina V., Doctor of Medical Sciences, Professor of Anesthesiology and Intensive Care Department, Deputy Head of Research Clinical Center of Anesthesiology and Intensive Care, Deputy Head Physician of University Clinic in Anesthesiology and Intensive Care

6-8, Lva Tolstogo St., St. Petersburg, 197022



N. N. Petrishchev
Pavlov First Saint Petersburg State Medical University
Russian Federation

Petrishchev Nikolay N., Doctor of Medical Sciences, Professor of Morbid Physiology Department with Training in Clinical Morbid Physiology, Head of Laser Medicine Center of Scientific and Educational Biomedicine Institute

6-8, Lva Tolstogo St., St. Petersburg, 197022



I. V. Vartanova
Pavlov First Saint Petersburg State Medical University
Russian Federation

Vartanova Irina V., Candidate of Medical Sciences, Associate Professor of Anesthesiology and Intensive Care Department 

6-8, Lva Tolstogo St., St. Petersburg, 197022



References

1. Belenkov Yu.N., Privalova E.V., Danilogorskaya Yu.A. et al. Structural and functional changes in the microvasculature at the capillary level in patients with cardiovascular diseases (arterial hypertension, coronary heart disease, and chronic heart failure). Kardiologiya i Serdechno-Sosudistaya Khirurgiya, 2012, vol. 5, no. 2, pp. 49-56. (In Russ.)

2. Borzilova Yu.A., Boldyreva L.A., Shlyk I.V. Vasculoendothelial growth factors (VEGF): role and place in pathologies. Vestnik Oftalmologii, 2016, vol. 132, no. 4, pp. 98-103. (In Russ.) https://doi.org/10.17116/oftalma2016132498-103.

3. Ladozhskaya-Gapeenko E.E., Khrapov K.N., Polushin Yu.S. et al. Evaluation of microcirculation disorders in patients with severe COVID-19 by nail bed capillaroscopy. Messenger of Anesthesiology and Resuscitation, 2021, vol. 18, no. 1, pp. 27-36. (In Russ.) https://doi.org/10.21292/2078-5658-2021-18-1-27-36.

4. Petrischev N.N., Khalepo O.V., Vavilenkova Yu.A. et al. COVID-19 and vascular disorders (literature review). Regionarnoe Krovoobraschenie iMikrotsirkulyatsiya, 2020, vol. 19, no. 3, pp. 90-98. (In Russ.) https://doi.org/10.24884/1682-6655-2020-19-3-90-98.

5. Fabrikantov O.L., Pronichkina M.M. Capillaroscopy parameters of the nailfold microcirculation (review). Sibirsky NauchnyMeditsinsky Journal, 2018, vol. 38, no. 2, pp. 62-67. (In Russ.) https://doi.org/10.15372/SSMJ20180210.

6. Abou-Arab O., Beyls C., Khalipha A. Microvascular flow alterations in critically ill COVID-19 patients: A prospective study. PLoS One, 2021, vol. 16, no. 2, pp. e0246636. https://doi.org/10.1371/journal.pone.0246636. PMID:33556081;PMCID: PMC7870020.

7. Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N. Engl. J. Med., 2020, vol. 383, no. 2, pp. 120-128. https://doi.org/10.1056/NEJMoa2015432. Epub 2020 May 21. PMID:32437596;PMCID: PMC7412750.

8. Bermejo-Martin J.F., Almansa R., Torres A. et al. COVID-19 as a cardiovascular disease: the potential role of chronic endothelial dysfunction. Cardiovasc. Res., 2020, vol. 116, no. 10, pp. e132-e133. https://doi.org/10.1093/cvr/cvaa140. PMID:32420587;PMCID: PMC7314234.

9. Bermejo-Martin J.F., Martin-Fernandez M., Lopez-Mestanza C. et al. Features of endothelial dysfunction between sepsis and its preceding risk factors (aging and chronic disease). J. Clin. Med., 2018, vol. 7, no. 11, pp. 400. https://doi.org/10.3390/jcm7110400. PMID:30380785;PMCID: PMC6262336.

10. Binggeli C., Spieker L.E., Corti R. et al. Statins enhance postischemic hyperemia in the skin circulation of hypercholesterolemic patients: a monitoring test of endothelial dysfunction for clinical practice? J. Am. Coll. Cardiol., 2003, vol. 42, no. 1, pp. 71-77. https://doi.org/10.1016/s0735-1097(03)00505-9. PMID:12849662.

11. Bonaventura A., Vecchie A., Dagna L. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol., vol. 21, no. 5, pp. 319-329. https://doi.org/10.1038/s41577-021-00536-9. Epub 2021 Apr 6. PMID:33824483;PMCID: PMC8023349.

12. Carsana L., Sonzogni A., Nasr A. et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect. Dis., 2020, vol. 20, no. 10, pp. 1135-1140. https://doi.org/10.1016/S1473-3099(20)30434-5. Epub 2020 Jun 8. PMID:32526193;PMCID: PMC7279758.

13. Ciceri F., Beretta L., Scandroglio A.M. et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit. Care Resusc., 2020, vol. 22, no. 2, pp. 95-97. Epub ahead of print. PMID:32294809.

14. Deshmukh V., M otwani R., Kumar A. et al. Histopathological observations in COVID-19: a systematic review. J. Clin. Pathol., 2020, pp. 1-8. https://doi.org/10.1136/jclinpath-2020-206995. PMID:32817204https://doi.org/10.1136/jclinpath-2020-206995.

15. Endemann D.H., Schiffrin E.L. Endothelial dysfunction. J. Am. Soc. Nephrol., 2004, vol. 15, no. 8, pp. 1983-1992. https://doi.org/10.1097/01.ASN.0000132474.50966. DA. PMID:15284284.

16. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China]. Zhonghua Liu Xing Bing Xue Za Zhi. 2020, vol. 41, no. 2, pp. 145-151. Chinese. https://doi.org/10.3760/cma.j.issn.0254-6450.2020.02.003. PMID:32064853.

17. Fanelli V., Fiorentino M., Cantaluppi V. et al. Acute kidney injury in SARS-CoV-2 infected patients. Crit. Care, 2020, vol. 24, no. 1, pp. 155. https://doi.org/10.1186/s13054-020-02872-z. PMID:32299479;PMCID: PMC7161433.

18. Figliozzi S., Masci P.G., Ahmadi N. et al. Predictors of adverse prognosis in COVID-19: A systematic review and meta-analysis. Eur. J. Clin. Invest., 2020, vol. 50, no. 10, pp. e13362. https://doi.org/10.1111/eci.13362. Epub 2020 Aug 27. PMID:32726868.

19. Gattinoni L., Chiumello D., Caironi P. et al. COVID-19 pneumonia: different respiratory treatment for different phenotypes? Intens. Care Med., 2020, vol. 46, no. 6, pp. 1099-1102. https://doi.org/10.1007/s00134-020-06033-2.

20. Gattinoni L., Coppola S., Cressoni M. et al. D. COVID-19 does not lead to a "typical" acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med., 2020, vol. 201, no. 10, pp. 1299-1300. https://doi.org/10.1164/rccm.202003-0817LE. PMID:32228035;PMCID: PMC7233352.

21. Ghiadoni L., Versari D., Giannarelli C. et al. S. Non-invasive diagnostic tools for investigating endothelial dysfunction. Curr. Pharm. Des., 2008, vol. 14, no. 35, pp. 3715-3722. https://doi.org/10.2174/138161208786898761. PMID:19128224.

22. Godo S., Shimokawa H. Endothelial Functions. Arterioscler. Thromb. Vasc. Biol., 2017, vol. 37, no. 9, pp. e108-e114. https://doi.org/10.1161/ATVBAHA.117.309813. PMID:28835487.

23. Goshua G., Pine A.B., M eizlish M.L. et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol., 2020, vol. 7, no. 8, pp. e575-e582. https://doi.org/10.1016/S2352-3026(20)30216-7. Epub 2020 Jun 30. PMID:32619411;PMCID: PMC7326446.

24. Green S.J. COVID-19 accelerates endothelial dysfunction and nitric oxide deficiency. Microbes. Infect., 2020, vol. 22, no. 4-5, pp. 149-150. https://doi.org/10.1016/j.micinf.2020.05.006. Epub 2020 May 16. PMID:32425647;PMCID: PMC7229726.

25. Guo T., Fan Y., Chen M. et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol., 2020, vol. 5, no. 7, pp. 811-818. https://doi.org/10.1001/jamacardio.2020.1017. PMID:32219356;PMCID: PMC7101506.

26. Hamming I., Timens W., Bulthuis M.L. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol., 2004, vol. 203, no. 2, pp. 631-637. https://doi.org/10.1002/path.1570. PMID:15141377;PMCID: PMC7167720.

27. Hern S., Mortimer P.S. Visualization of dermal blood vessels - capillaroscopy. Clin. Exp. Dermatol., 1999, vol. 24, pp. 473-478. PMID:10606953.https://doi.org/10.1046/j.1365-2230.1999.00537.x.

28. Holy E.W., Akhmedov A., Speer T. et al. Carbamylated low-density lipoproteins induce a prothrombotic state via lox-1: impact on arterial thrombus formation in vivo. J. Am. Coll. Cardiol., 2016, vol. 68, no. 15, pp. 1664-1676. https://doi.org/10.1016/ j.jacc.2016.07.755. PMID:27712780.

29. Hutchings S.D., Watchorn J., Trovato F. et al. Microcirculatory, endothelial, and inflammatory responses in critically ill patients with COVID-19 are distinct from those seen in septic shock: a case control study. Shock, 2021, vol. 55, no. 6, pp. 752-758. https://doi.org/10.1097/SHK.0000000000001672. PMID:33021572.

30. Iba T., Levy J.H., Connors J.M. et al. The unique characteristics of COVID-19 coagulopathy. Crit. Care, 2020, vol. 24, no. 1, pp. 360. https://doi.org/10.1186/s13054-020-03077-0. PMID:32552865;PMCID: PMC7301352.

31. Jin Y., Ji W., Yang H. et al. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal. Transduct. Target. Ther., 2020, vol. 5, no. 1, pp. 293. https://doi.org/10.1038/s41392-020-00454-7. PMID:33361764;PMCID: PMC7758411.

32. Jin Y., Yang H., Ji W. et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses, 2020, vol. 12, no. 4, pp. 372. https://doi.org/10.3390/v12040372. PMID:32230900;PMCID: PMC7232198.

33. Kanoore Edul V.S., Caminos Eguillor J.F., Ferrara G. et al. Microcirculation alterations in severe COVID-19 pneumonia. J. Crit. Care, 2021, vol. 61, pp. 73-75. https://doi.org/10.1016/j.jcrc.2020.10.002. Epub 2020 Oct 17. PMID:33096349;PMCID: PMC7568145.

34. Klok F.A., Kruip M.J.H.A., van der Meer N.J.M. et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res., 2020, vol. 191, pp. 145-147. https://doi.org/10.1016/j.thromres.2020.04.013. Epub. 2020 Apr. 10. PMID:32291094;PMCID: PMC7146714.

35. Kruger-Genge A., Blocki A., Franke R.P., Jung F. Vascular endothelial cell biology: an update. Int. J. Mol. Sci., 2019, vol. 20, no. 18, pp. 4411. https://doi.org/10.3390/ijms20184411. PMID:31500313;PMCID: PMC6769656.

36. Levi M. COVID-19 coagulopathy vs disseminated intravascular coagulation. Blood Adv., 2020, vol. 4, no. 12, pp. 2850. https://doi.org/10.1182/bloodadvances.2020002197. PMID:32574369;PMCID: PMC7322961.

37. Li H., Liu L., Zhang D. et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet, 2020, vol. 395, pp. 1517-1520. https://doi.org/10.1016/S0140-6736(20)30920-X.

38. Nachman R.L., Rafii S. Platelets, petechiae, and preservation of the vascular wall. N. Engl. J. Med., 2008, vol. 359, no. 12, pp. 1261-2170. https://doi.org/10.1056/NEJMra0800887. PMID:18799560;PMCID: PMC2935201.

39. Nagele M.P., Haubner B., Tanner F.C. et al. Endothelial dysfunction in COVID-19: Current findings and therapeutic implications. Atherosclerosis, 2020, vol. 314, pp. 58-62. https://doi.org/10.1016/j.atherosclerosis.2020.10.014. Epub 2020 Oct 14. PMID:33161318;PMCID: PMC7554490.

40. Panigada M., Bottino N., Tagliabue P. et al. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J. Thromb. Haemost., 2020, vol. 18, no. 7, pp. 1738-1742. https://doi.org/10.1111/jth.14850. Epub. 2020 Jun. 24. PMID:32302438.

41. Pober J.S., Sessa W.C. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol., 2007, vol. 7, no. 10, pp. 803-815. https://doi.org/10.1038/nri2171. PMID:17893694.

42. Poor H.D., Ventetuolo C.E., Tolbert T. et al. COVID-19 critical illness pathophysiology driven by diffuse pulmonary thrombi and pulmonaryendothelial dysfunction responsive to thrombolysis. Clin. Transl. Med., 2020, vol. 10, no. 2, pp. e44. https://doi.org/10.1002/ctm2.44. Epub. 2020 Jun. 5. PMID:32508062;PMCID: PMC7288983.

43. Puissant C., Abraham P., Durand S. et al. La fonction endotheliale: role, methodes devaluation et limites [Endothelial function: role, assessment and limits]. J. Mal. Vasc., 2014, vol. 39, no. 1, pp. 47-56. French. https://doi.org/10.1016/j. jmv.2013.11.004. Epub 2013 Dec 16. PMID:24355615.

44. Ranucci M., Ballotta A., Di Dedda U. et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J. Thromb. Haemost., 2020, vol. 18, no. 7, pp. 1747-1751. https://doi.org/10.1111/jth.14854. Epub. 2020 May 6. PMID:32302448.

45. Rovas A., Osiaevi I., Buscher K. et al. Microvascular dysfunction in COVID-19: the MYSTIC study. Angiogenesis, 2021, vol. 24, no. 1, pp. 145-157. https://doi.org/10.1007/s10456-020-09753-7. Epub. 2020 Oct. 14. PMID:33058027;PMCID: PMC7556767.

46. Sturtzel C. Endothelial cells. Adv. Exp. Med Biol., 2017, vol. 1003, pp. 71-91. https://doi.org/10.1007/978-3-319-57613-8_4. PMID:28667554.

47. Tang N., Li D., Wang X. et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost., 2020, vol. 18, no. 4, pp. 844-847. https://doi.org/10.1111/jth. 14768.

48. Teuwen LA., Geldhof V., Pasut A., Carmeliet P. COVID-19: the vasculature unleashed. Nat. Rev. Immunol., 2020, vol. 20, no. 7, pp. 389-391. https://doi.org/10.1038/s41577-020-0343-0. PMID:32439870;PMCID: PMC7240244.

49. Tian S., Hu W., Niu L. et al. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol., 2020, vol. 15, no. 5, pp. 700-704. https://doi.org/10.1016/j.jtho.2020.02.010. Epub. 2020 Feb. 28. PMID:32114094;PMCID: PMC7128866.

50. Vuilleumier P., Decosterd D., Maillard M. et al. Postischemic forearm skin reactive hyperemia is related to cardovascular risk factors in a healthy female population. J. Hypertens., 2002, vol. 20, no. 9, pp. 1753-1757. https://doi.org/10.1097/ 00004872-200209000-00018. PMID:12195115.

51. Yang X., Yu Y., Xu J. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med., 2020, vol. 8, no. 5, pp. 475-481. https://doi.org/10.1016/S2213-2600(20)30079-5. Epub. 2020 Feb. 24. PMID:32105632;PMCID: PMC7102538.

52. Yau J.W., Teoh H., Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc. Disord., 2015, vol. 19, no. 15, pp. 130. https://doi.org/10.1186/s12872-015-0124-z. PMID:26481314;PMCID: PMC4617895.

53. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020, vol. 395 (10229), pp. 1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3. Epub. 2020 Mar. 11. Erratum 2020 Mar. 28. PMID:32171076;PMCID: PMC7270627.


Review

For citations:


Ladozhskaya-Gapeenko E.E., Khrapov K.N., Polushin Yu.S., Shlyk I.V., Petrishchev N.N., Vartanova I.V. Microcirculation Disorders in Patients with Severe COVID-19. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2021;18(4):7-19. (In Russ.) https://doi.org/10.21292/2078-5658-2021-18-4-7-19



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)