Preview

Messenger of ANESTHESIOLOGY AND RESUSCITATION

Advanced search

Antibacterial therapy of sepsis in extracorporeal detoxication: current problems and ways to solve them

https://doi.org/10.21292/2078-5658-2020-17-6-80-87

Abstract

The effectiveness of antibacterial therapy is a critical factor to improve treatment outcomes in sepsis patients. Impaired renal function and renal replacement therapy lead to a significant change in the pharmacokinetic parameters of most intravenous antibacterial drugs, which in many cases is accompanied by insufficient or excessive concentration in the blood which results in antibacterial therapy failure. The article presents current views and describes the current problems of antibacterial therapy for sepsis during the use of extracorporeal detoxification methods.

The objective: to analyze publications on antibacterial therapy of sepsis during the extracorporeal detoxification.

Results: the most accessible and effective method for solving the problem of inadequate dosage of antibiotics when using extracorporeal detoxification is to develop local protocols based on the results of pharmacokinetic studies.

About the Authors

A. V. Marukhov
S.M. Kirov Military Medical Academy
Russian Federation

Artem V. Marukhov Candidate of Medical Sciences, Head of Anesthesiology and Intensive Care Department no. 1 of the Nephrology and Extracorporeal Blood Purification Therapy Clinic

6, Academician Lebedev St., St. Petersburg, 194044



M. V. Zakharov
S.M. Kirov Military Medical Academy
Russian Federation

Mikhail V. Zakharov Candidate of Medical Sciences, Associate Professor, Deputy Head of Nephrology and Extracorporeal Blood Purification Therapy Unit

6, Academician Lebedev St., St. Petersburg, 194044



N. V. Chubchenko
S.M. Kirov Military Medical Academy
Russian Federation

Natalia V. Chubchenko Head of the Department, Anesthesiologist and Emergency Physician of Anesthesiology and Intensive Care Department no. 2 of the Nephrology and Extracorporeal Blood Purification Therapy Clinic

6, Academician Lebedev St., St. Petersburg, 194044



A. N. Belskikh
S.M. Kirov Military Medical Academy
Russian Federation

Andrey N. Belskikh Doctor of Medical Sciences, Professor, Correspondent Member of the Russian Academy of Sciences, Head of Nephrology and Extracorporeal Blood Purification Therapy Unit

6, Academician Lebedev St., St. Petersburg, 194044



L. V. Buryakova
S.M. Kirov Military Medical Academy
Russian Federation

Lyudmila V. Buryakova Candidate of Biological Sciences, Associate Professor, Researcher of Research Laboratory of Military Surgery within Research Department of Experimental Medicine of the Research Center

6, Academician Lebedev St., St. Petersburg, 194044



D. Yu. Lazarenko
S.M. Kirov Military Medical Academy
Russian Federation
Diana Yu. Lazarenko Candidate of Biological Sciences, Junior Researcher of Research Laboratory for Medicinal and Ecological Toxicology, Research Department of Experimental Medicine, Research Center 6, Academician Lebedev St., St. Petersburg, 194044


References

1. Tsvetkov D.S., Gromova E.G., Kuznetsova L.S. et al. Optimization of antibiotic therapy during prolonged renal replacement therapy. Infeksii v Khirurgii, 2011, vol. 9, no. 2, pp. 6-14. (In Russ.)

2. Shlyk I.V. Experience of introduction of the antimicrobial therapy control system in a general hospital. Messenger of Anesthesiology and Resuscitation, 2019, no. 6 (16), pp. 60-66. (In Russ.)

3. Asín-Prieto E., Rodríguez-Gascón A., Isla A. Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J. Infect. Chemother., 2015, vol. 21, no. 5, pp. 319‒329. doi:10.1016/j.jiac.2015.02.001.

4. De Waele J.J., Lipman J., Akova M. et al. Risk factors for target non-attainment during empirical treatment with β-lactam antibiotics in critically ill patients. Intens. Care Med., 2014, vol. 23, no. 40 (9), pp. 1340‒1351. doi:10.1007/s00134-014-3403-8.

5. Ferrer R., Martin-Loeches I., Phillips G. et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour. Crit. Care Med., 2014, vol. 42, no. 8, pp. 1749‒1755. doi: 10.1097/ccm.0000000000000330.

6. Giles L., Jennings A., Thomson A. et al. Pharmacokinetics of meropenem in intensive care unit patients receiving continuous veno-venous hemofiltration or hemodiafiltration. Crit. Care Med., 2000, vol. 28, no. 3, pp. 632‒637. doi: 10.1097/00003246-200003000-00005.

7. Harris L., Reaves A., Krauss A. et al. Evaluation of antibiotic prescribing patterns in patients receiving sustained low-efficiency dialysis: opportunities for pharmacists. Intern. J. Pharm. Pract., 2012, vol. 21, no. 1, pp. 55‒61. doi: 10.1111/j.2042-7174.2012.00226.x.

8. Heintz B., Matzke G., Dager W. Antimicrobial dosing concepts and recommendations for critically ill adult patients receiving continuous renal replacement therapy or intermittent hemodialysis. Pharmacotherapy, 2009, vol. 29, no. 5, pp. 562‒577. doi: 10.1592/phco.29.5.562.

9. Hoff B., Maker J., Dager W. et al. Antibiotic dosing for critically ill adult patients receiving intermittent hemodialysis, prolonged intermittent renal replacement therapy, and continuous renal replacement therapy: an update. Ann. Pharmacother., 2019, vol. 54, no. 1, pp. 43‒55. doi: 10.1177/1060028019865873.

10. Honore P.M., Jacobs R., De Waele E., Spapen H.D. Applying pharmacokinetic/pharmacodynamic principles for optimizing antimicrobial therapy during continuous renal replacement therapy. Anaesth. Intens. Therapy, 2017, vol. 49, no. 5, pp. 412–418. doi: 10.5603/AIT.a2017.0071.

11. Isla A., Maynar J., Sánchez-Izquierdo J. et al. Meropenem and continuous renal replacement therapy: in vitro permeability of 2 continuous renal replacement therapy membranes and influence of patient renal function on the pharmacokinetics in critically ill patients. J. Clin. Pharmacol., 2005, vol. 45, no. 11, pp. 1294‒1304. doi: 10.1177/0091270005280583.

12. Jang S.M., Infante S. Abdi pour a. drug dosing considerations in critically ill patients receiving continuous renal replacement therapy. Pharmacy (Epub.) MDPI AG, 2020, vol. 7, no. 8 (1), pp. 18. doi: 10.3390/pharmacy8010018.

13. Jang S.M., Pai M.P., Shaw A.R., Mueller B.A. Antibiotic exposure profiles in trials comparing intensity of continuous renal replacement. Therapy Crit. Care Med. (Epub.) Ovid Technologies (Wolters Kluwer Health), 2019, vol. 47, no. 11, pp. e863‒e871. doi: 10.1097/ccm.0000000000003955.

14. Kächele M., Keller F. Рharmacokinetics and pharmacodynamics in extracorporeal renal replacement therapy. Med. Klin. Intensivmed Notfmed, 2020, Feb 11. doi:10.1007/s00063-020-00654-7.

15. Keough L.A., Krauss A., Hudson J.Q. Inadequate antibiotic dosing in patients receiving sustained low efficiency dialysis. Intern. J. Clin. Pharm., (Epub.), Springer Science and Business Media LLC, 2018, vol. 26, vol. 40, no. 5, pp. 1250–1256. doi: 10.1007/s11096-018-0697-6.

16. Kielstein J., Burkhardt O. Dosing of antibiotics in critically ill patients undergoing renal replacement therapy. Curr. Pharm. Biotechnol., 2011, vol. 12, no. 12, pp. 2015‒2019. doi: 10.2174/138920111798808275.

17. Lewis S., Mueller B. Antibiotic dosing in critically ill patients receiving crrt: underdosing is overprevalent. Semin. Dial., 2014, vol. 27, no. 5, pp. 441‒445. doi: 10.1111/sdi.12203.

18. Lewis S., Mueller B. Antibiotic dosing in patients with acute kidney injury. J. Intens. Care Med., 2016, vol. 31, no. 3, pp. 164‒176. doi: 10.1177/0885066614555490.

19. Owen E.J., Gibson G.A., Buckman S.A. Pharmacokinetics and pharmacodynamics of antimicrobials in critically ill patients. Surgical Infect., (Epub.) 2018, vol. 19, no. 2, pp. 155–162. doi: 10.1089/sur.2017.262.

20. Richter D., Frey O., Röhr A. et al. Therapeutic drug monitoring-guided continuous infusion of piperacillin/tazobactam significantly improves pharmacokinetic target attainment in critically ill patients: a retrospective analysis of four years of clinical experience. Infection. 2019, vol. 47, no. 6, pp. 1001–1011. doi: 10.1007/s15010-019-01352-z.

21. Robatel C., Decosterd L.A., Biollaz J. et al. Pharmacokinetics and dosage adaptation of meropenem during continuous venovenous hemodiafiltration in critically ill patients. J. Clin. Pharmacol., 2003, vol. 43, no. 12, pp. 1329–1340. doi: 10.1177/0091270003260286.

22. Roberts D., Roberts J., Roberts M. et al. Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy. Crit. Care Med., 2012, vol. 40, no. 5, pp. 1523–1528. doi: 10.1097/ccm.0b013e318241e553.

23. Roberts D.M., Liu X., Roberts J.A. et al. A multicenter study on the effect of continuous hemodiafiltration intensity on antibiotic pharmacokinetics. Crit. Care, 2015, vol. 19, pp. 84. doi: 10.1186/s13054-015-0818-8.

24. Roberts J., Roberts D. Antibiotic dosing in critically ill patients with septic shock and on continuous renal replacement therapy: can we resolve this problem with pharmacokinetic studies and dosing guidelines? Crit. Care, 2014, vol. 18, no. 3, pp. 156. doi: 10.1186/cc13939.

25. Roberts J.A., Joynt G., Lee A. et al. The effect of renal replacement therapy and antibiotic dose on antibiotic concentrations in critically ill patients: Data from the multinational SMARRT Study. Clin. Infect. Dis., 2020, pii: ciaa224. doi:10.1093/cid/ciaa224.

26. Seyler L., Cotton F., Taccone F. et al. Recommended β-lactam regimens are inadequate in septic patients treated with continuous renal replacement therapy. Crit. Care, 2011, vol. 15, no. 3, pp. 137. doi: 10.1186/cc10257.

27. Shaw A.R., Chaijamorn W., Mueller B.A. We underdose antibiotics in patients on CRRT. Semin. Dialysis, 2016, vol. 29, no. 4, pp. 278–280. doi: 10.1111/sdi.12496.

28. Shaw A.R., Mueller B.A. Antibiotic dosing in continuous renal replacement therapy. Advan. Chronic Kidney Dis., 2017, vol. 24, no. 4, pp. 219–227. doi: 10.1053/j.ackd.2017.05.004.

29. Tegeder I., Neumann F., Bremer F. et al. Pharmacokinetics of meropenem critically ill patients with acute renal failure undergoing continuous venovenous hemofiltration. Clin. Pharmacology & Therapeutics, 1999, vol. 65, no. 1, pp. 50‒57. doi: 10.1016/s0009-9236(99)70121-9.

30. Thalhammer F., Schenk P., Burgmann H. et al. Single-Dose Pharmacokinetics of Meropenem during Continuous Venovenous Hemofiltration. Antimicrob. Agents Chemother., 1998, vol. 42, no. 9, pp. 2417–2420. doi: 10.1128/aac.42.9.2417.

31. Ulldemolins M., Soy D., Llaurado-Serra M. et al. Meropenem population pharmacokinetics in critically ill patients with septic shock and continuous renal replacement therapy: influence of residual diuresis on dose requirements. Antimikrob. Agents Chemother., 2015, vol. 59, no. 9, pp. 5520–5528. doi: 10.1128/aac.00712-15.

32. Ulldemolins M., Vaquer S., Llauradó-Serra M. et al. Beta-lactam dosing in critically ill patients with septic shock and continuous renal replacement therapy. Crit. Care, 2014, vol. 18, no. 3, pp. 227. doi: 10.1186/cc13938.

33. Vaara S., Pettila V., Kaukonen K. Quality of pharmacokinetic studies in critically ill patients receiving continuous renal replacement therapy. ActaAnaesthesiol Scand., 2011, vol. 56, no. 2, pp. 147–157. doi: 10.1111/j.1399-6576.2011.02571.x.


Review

For citations:


Marukhov A.V., Zakharov M.V., Chubchenko N.V., Belskikh A.N., Buryakova L.V., Lazarenko D.Yu. Antibacterial therapy of sepsis in extracorporeal detoxication: current problems and ways to solve them. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2020;17(6):80-87. (In Russ.) https://doi.org/10.21292/2078-5658-2020-17-6-80-87



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)