Preview

Messenger of ANESTHESIOLOGY AND RESUSCITATION

Advanced search

Diagnostic markers of early neonatal sepsis – limitations and perspectives

https://doi.org/10.21292/2078-5658-2020-17-6-72-79

Abstract

Neonatal sepsis continues to be one of the main problems in the treatment of premature infants due to the variability of the clinical signs, the lack of uniform diagnostic criteria, optimal markers that would not be affected by the course of pregnancy, gestational age, delivery, and the early neonatal period.

The objective: to analyze current data on serum markers of neonatal sepsis in newborns including children with extremely low and very low birth weight.

The article reviews traditional markers that are currently widely used in resuscitation neonatal practice – C-reactive protein, procalcitonin, and among the new ones – preadrenomedullin, and presepsin. It lists their positive and negative aspects, compares their characteristics, notes publications that describe the possibilities and limitations of their use for early diagnosis of neonatal sepsis.

It has been concluded that among all markers, presepsin is of the greatest interest due to its highest sensitivity and specificity compared to the others.

About the Authors

O. I. Ivanova
Kemerovo State Medical University; Kemerovo Regional Clinical Hospital
Russian Federation

Oksana N. Ivanova Assistant of Anesthesiology and Intensive Care Department

22, Voroshilova St., Kemerovo, 650056



E. V. Grigoriev
Kemerovo State Medical University
Russian Federation

Evgeny V. Grigoriev Professor, Doctor of Medical Sciences, Head of Anesthesiology and Intensive Care Department

22, Voroshilova St., Kemerovo, 650056



References

1. Аfanasiev А.А., Malinina D.А., Kolchanova V.N. et al. Place of presepsin in the screening for infections in the critically ill patients. Messenger of Anesthesiology and Resuscitation, 2018, vol. 15, no. 4, pp. 23‒33. (In Russ.) doi.org/10.21292/2078-5658-2018-15-4-23-33.

2. Gizatullin R.Kh., Mironov P.I. Post-pyloric nutritional support in the complex treatment of neonatal sepsis. Messenger of Anesthesiology and Resuscitation, 2015, vol. 12, no. 3, pp. 9‒14. (In Russ.) doi.org/10.21292/2078-5658-2015-12-3-9-14.

3. Grigoriev E.V., Matveeva V.G., Shukevich D.L. et al. Induced immunosuppression in critical conditions: diagnostic possibilities in clinical practice. Bulleten Sibirskoy Meditsiny, 2019, no. 1, pp. 18‒29. (In Russ.) https://doi.org/10.20538/1682-0363-2019-1-18-29.

4. Lekmanov А.U., Mironov P.I., Rudnov V.А. et al. Modern definitions and principles of intensive care of sepsis in children. Messenger of Anesthesiology and Resuscitation, 2018, vol. 15, no. 4, pp. 61‒69. (In Russ.) doi.org/10.21292/2078-5658-2018-15-4-61-69.

5. Shmakov А.N., Kokhno V.N. Kriticheskie sostoyaniya novorozhdennykh (tekhnologiya distantsionnogo konsultirovaniya i evakuatsii). [Newborns in critical state (the technology of distant consulting and evacuation)]. Novosibirsk, 2007.

6. Adams-Chapman I., Stoll B.J. Neonatal infection and long-term neurodevelopmental outcome in the preterm infant. Curr. Opin. Infect. Dis., 2006, vol. 19, no. 3, pp. 290–297. doi:10.1097/01.qco.0000224825.57976.87.

7. Behrman R.E., Shiono P.H. Neonatal risk factors. In: Fanaroff A.A., Martin R.J., eds. Neonatal-perinatal medicine. St. Louis, MO: Mosby, 2002. pp. 17–26. doi:10.1002/ppul.1950160312.

8. Bellos I., Fitrou G., Pergialiotis V. et al. The diagnostic accuracy of presepsin in neonatal sepsis: a meta-analysis. Eur. J. Pediatr., 2018, vol. 177, no. 5, pp. 625–632. doi:10.1007/s00431-018-3114-1.

9. Chiesa C., Panero A., Osborn J.F. et al. Diagnosis of neonatal sepsis: a clinical and laboratory challenge. Clin. Chemistry, 2004, vol. 50, no. 2, pp. 279–287. doi:10.1373/clinchem.2003.025171.

10. Chiesa C., Panero A., Rossi N. et al. Reliability of procalcitonin concentrations for the diagnosis of sepsis in critically ill neonates. Clin. Infect. Dis., 1998, vol. 26, no. 3, pp. 664–672. doi:10.1086/514576.

11. Clyne B., Olshaker J.S. The C-Reactive protein. J. Emerg. Med., 1999, vol. 17, no. 6, pp. 1019–1025. doi:10.1016/s0736-4679(99)00135-3.

12. Cohen-Wolkowiez M., Moran C., Benjamin D.K. et al. Early and late onset sepsis in late preterm infants. Pediatr. Infect. Dis. J., 2009, vol. 28, no. 12, pp. 1052–1056. doi:10.1097/inf.0b013e3181acf6bd.

13. Connell T.G., Rele M., Cowley D. et al. How reliable is a negative blood culture result? Volume of blood submitted for culture in routine practice in a children’s hospital. Pediatrics, 2007, vol. 119, no. 5, pp. 891‒896. doi:10.1542/peds.2006-0440.

14. Edwards M.S., Baker C.J. Sepsis in the newborn. In: A.A. Gershon, P.J. Hotez, and S.L. Katz. Krugman’s. Infect. Dis. Children, Eds, Mosby, Philadelphia, Pa, USA. 2004, pp. 545‒561.

15. Ehlenz K., Koch B., Preuss P. et al. High levels of circulating adrenomedullin in severe illness: correlation with C-reactive protein and evidence against the adrenal medulla as site of origin. Experim. Clin. Endocrinol. & Diabetes, 2009, vol. 105, no. 3, pp. 156–162. doi:10.1055/s-0029-1211745.

16. Gogos C.A., Drosou E., Bassaris H.P. et al. Pro‐versus anti‐inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J. Infect. Dis., 2000, vol. 181, no. 1, pp. 176–180. doi:10.1086/315214.

17. Goldstein B., Giroir В., Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr. Crit. Care Med., 2005, vol. 6, no. 1, pp. pp. 2-8. (In Russ.) doi: 10.1097/01.PCC.0000149131.72248.E6.

18. Hahn W.H., Song J.H., Park I.S. et al. Reference intervals of serum procalcitonin are affected by postnatal age in very low birth weight infants during the first 60 days after birth. Neonatology, 2015, vol. 108, no. 1, pp. 60–64. doi:10.1159/000381330.

19. Hedegaard S.S., Wisborg K., Hvas A. Diagnostic utility of biomarkers for neonatal sepsis – a systematic review. Infect. Dis., 2014, vol. 47, no. 3, pp. 117–124. doi:10.3109/00365548.2014.971053.

20. Hofer N., Zacharias E., Müller W. et al. An update on the use of C-reactive protein in early-onset neonatal sepsis: current insights and new tasks. Neonatology, 2012, vol. 102, no. 1, pp. 25–36. doi:10.1159/000336629.

21. Hofer N., Zacharias E., Müller W. et al. Performance of the definitions of the systemic inflammatory response syndrome and sepsis in neonates. J. Perinatal Med., 2012, vol. 40, no. 5, pp. 587‒590. doi:10.1515/jpm-2011-0308.

22. Hornik C.P., Fort P., Clark R.H. et al. Early and late onset sepsis in very-low-birth-weight infants from a large group of neonatal intensive care units. Early Human Development, 2012, vol. 88, suppl. 2, pp. 69–74. doi:10.1016/s0378-3782(12)70019-1.

23. Kang F.X., Wang R.L., Yu K.L. et al. The study on pro-adrenomedullin as a new biomarker in sepsis prognosis and risk stratification. Chinese Crit. Care Med. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2008, vol. 20, no. 8, pp. 452-455. PMID: 18687169.

24. Kim C.J., Romero R., Chaemsaithong P. et al. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am. J. Obstetrics Gynecol., 2015, vol. 213, suppl. 4, pp. 29‒52. doi:10.1016/j.ajog.2015.08.040.

25. Kumar N., Dayal R., Singh P. et al. A comparative evaluation of presepsin with procalcitonin and CRP in diagnosing neonatal sepsis. Indian J. Pediatr., 2019, vol. 86, no. 2, pp. 177‒179. doi:10.1007/s12098-018-2659-3.

26. Masseva A., Dimitrov A., Marinov B. et al. Intraamniotic infection ‒ cause and satellite of preterm birth. Akusherstvo I Ginekologiia, vol. 52, suppl. 2, pp. 15-21. PMID: 24294756.

27. Masson S., Caironi P., Spanuth E. et al. Presepsin (soluble CD14 subtype) and procalcitonin levels for mortality prediction in sepsis: data from the Albumin Italian Outcome Sepsis trial. Crit. Care, 2014, vol. 18, no. 1, R6. doi:10.1186/cc13183.

28. Meem M., Modak J.K., Mortuza R. et al. Biomarkers for diagnosis of neonatal infections: a systematic analysis of their potential as a point-of-care diagnostics. J. Global Health, 2011, vol. 1, no. 2, pp. 201-209. PMID: 23198119.

29. Mizuno S. Granulocyte colony-stimulating factor and neonatal infection. J. Pediatrics, 1997, vol. 130, no. 5, pp. 845-846. PMID: 9152302.

30. Mussap M. Laboratory medicine in neonatal sepsis and inflammation. J. Maternal-Fetal & Neonatal Med., 2012, vol. 25, suppl. 4, pp. 32‒34. doi:10.3109/14767058.2012.715000.

31. Neal P.R., Kleiman M.B., Reynolds J.K. et al. Volume of blood submitted for culture from neonates. J. Clin. Microbiol., 1986, vol. 24, no. 3, pp. 353–356. doi:10.1128/jcm.24.3.353-356.1986.

32. Özenci V., Schubert U. Earlier and more targeted treatment of neonatal sepsis. Acta Paediatrica, 2018, vol. 108, no. 1, pp. 169–170. doi:10.1111/apa.14597.

33. Pizzolato E., Ulla M., Galluzzo C. et al. Role of presepsin for the evaluation of sepsis in the emergency department. Clin. Chem. Laborat. Med., 2014, vol. 52, no. 10, pp. 1395‒1400. doi:10.1515/cclm-2014-0199.

34. Pugni L., Pietrasanta C., Milani S. et al. Presepsin (soluble CD14 subtype): reference ranges of a new sepsis marker in term and preterm neonates. PloS one, 2015, vol. 10, no. 12. doi:10.1371/journal.pone.0146020.

35. Ruan L., Chen G.Y., Liu Z. et al. The combination of procalcitonin and C-reactive protein or presepsin alone improves the accuracy of diagnosis of neonatal sepsis: a meta-analysis and systematic review. Crit. Care, 2018, vol. 22, no. 1, pp. 316. doi:10.1186/s13054-018-2236-1.

36. Schlapbach L.J., Straney L., Bellomo R. et al. Prognostic accuracy of age-adapted SOFA, SIRS, PELOD-2, and qSOFA for in-hospital mortality among children with suspected infection admitted to the intensive care unit. Intens. Care Med., 2018, vol. 44, no. 2, pp. 179‒188. doi:10.1007/s00134-017-5021-8.

37. Singer M., Deutschman C.S., Seymour C.W. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 2016, vol. 315, no. 8, pp. 801‒810. doi:10.1001/jama.2016.0287.

38. Stoll B.J., Hansen N.I.., Higgins R.D. et al. Very low birth weight preterm infants with early onset neonatal sepsis. Pediatr. Infect. Dis. J., 2005, vol. 24, no. 7, pp. 635–639. doi:10.1097/01.inf.0000168749.82105.64.

39. Connell T.G., Rele M., Cowley D. et al. How reliable is a negative blood culture result? Volume of blood submitted for culture in routine practice in a children’s hospital. Pediatrics, 2007, vol. 119, no. 5, pp. 891‒896. doi:10.1542/peds.2006-0440.

40. Van Paridon B.M., Sheppard C., Joffe A.R. Timing of antibiotics, volume, and vasoactive infusions in children with sepsis admitted to intensive care. Crit. Care, 2015, vol. 19, no. 1, pp. 293. doi:10.1186/s13054-015-1010-x.

41. Weiss S.L., Fitzgerald J.C., Balamuth F. et al. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. Crit. Care Med., 2014, vol. 42, no. 11, pp. 2409–2417. doi:10.1097/ccm.0000000000000509.

42. Wu C.C., Lan H.M., Han S.T. et al. Comparison of diagnostic accuracy in sepsis between presepsin, procalcitonin, and C-reactive protein: a systematic review and meta-analysis. Ann. Intens. Care, 2017, vol. 7, no. 1, pp. 91. doi:10.1186/s13613-017-0316-z.


Review

For citations:


Ivanova O.I., Grigoriev E.V. Diagnostic markers of early neonatal sepsis – limitations and perspectives. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2020;17(6):72-79. (In Russ.) https://doi.org/10.21292/2078-5658-2020-17-6-72-79



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)