Preview

Messenger of ANESTHESIOLOGY AND RESUSCITATION

Advanced search

The impact of anesthesia method on the severity of oxidative stress during coronary artery bypass grafting with cardiopulmonary bypass

https://doi.org/10.21292/2078-5658-2020-17-6-7-14

Abstract

The objective: to investigate the impact of anesthesia method on the severity of oxidative stress in patients after coronary artery bypass grafting with cardiopulmonary bypass.

Subjects and methods. Patients were randomized (seed 6556 as of 04.01.2016, www.randomization.com) to Volatile Induction and Maintenance Anesthesia (VIMA) with Sevoflurane group (n = 65) and Total Intravenous Anesthesia with Propofol and Fentanyl (TIVA) group (n = 66). The changes in oxidative stress markers in blood plasma were studied: carbonylated proteins, nitrotyrosine, oxidized forms of low-density lipoproteins – oxy-LDL.

Results. At the critical stage with 24 hours after the surgery, statistically significant differences in the carbonyls blood levels were found between VIMA with Sevoflurane and TIVA with Propofol groups: 0.88 (0.79–0.96) nmol/mg protein (nmol/mg) in TIVA group vs 0.81 (0.75–0.91) nmol/mg in VIMA group, p = 0.01; and oxy-LDL levels 0.96 ± 0.40 mg/ml vs 0.83 ± 0.33 mg/ml, respectively, p = 0.04. Nitrotyrosine demonstrated no diagnostic value.

Conclusion. It has been suggested that sevoflurane possesses antioxidant properties that can be regarded as a positive quality of VIMA in coronary artery bypass grafting with cardiopulmonary bypass. 

About the Authors

O. N. Gerasimenko
M. F. Vladimirsky Moscow Regional Research Clinical Institute
Russian Federation

Oleg N. Gerasimenko Anesthesiologist and Emergency Physician of Anesthesiology and Intensive Care Department

61/2, Schepkina St., Moscow, 129110

Phone: +7 (495) 631‒05‒91



O. A. Grebenchikov
M. F. Vladimirsky Moscow Regional Research Clinical Institute; Federal Research Clinical Center of Reanimatology and Rehabilitation
Russian Federation

Oleg A. Grebenchikov Doctor of Medical Sciences, Head of the Laboratory for Organ Protection in Critical States, General Reanimatology Research Institute

25, Build. 2, Petrovka St., Moscow, 107031

Phone: +7 (495) 641‒30‒06



Yu. V. Skripkin
M. F. Vladimirsky Moscow Regional Research Clinical Institute
Russian Federation

Yury V. Skripkin Candidate of Medical Sciences, Head of Anesthesiology and Intensive Care Department, Associate Professor of Anesthesiology and Intensive Care Department

61/2, Schepkina St., Moscow, 129110

Phone: +7 (499) 674‒07‒09



O. R. Onischenko
Federal Research Clinical Center of Reanimatology and Rehabilitation
Russian Federation

Olga R. Onischenko Candidate of Psychological Sciences, Pro-Rector of Institute of Higher Professional Education and Professional Development

25, Build. 2, Petrovka St., Moscow, 107031



V. V. Likhvantsev
M. F. Vladimirsky Moscow Regional Research Clinical Institute; Federal Research Clinical Center of Reanimatology and Rehabilitation
Russian Federation

Valeriy V. Likhvantsev Doctor of Medical Sciences, Professor, Deputy Head of General Reanimatology Research Institute

25, Build. 2, Petrovka St., Moscow, 107031

Phone: +7 (495) 641‒30‒06



A. M. Ovezov
M. F. Vladimirsky Moscow Regional Research Clinical Institute
Russian Federation

Aleksey M. Ovezov Doctor of Medical Sciences, Associate Professor, Senior Researcher, Head of Anesthesiology Unit (Research), Head of Anesthesiology and Intensive Care Department

61/2, Schepkina St., Moscow, 129110

Phone: +7 (495) 631‒05‒91



References

1. Grebenchikov O.А., Likhvantsev V.V., Plotnikov E.Yu. et al. Molecular mechanisms of ischemia-reperfusion syndrome development and its targeted therapy. Anesteziologiya i Reanimatologiya, 2014, no. 3, pp. 59-67. (In Russ.) PMID: 25306686.

2. Grebenchikov O.А., Filippovskaya ZH.S., Zabelina T.S. et al. Nitrotyrosine testing does not allow assessing the severity of oxidative stress and predicting early complications in the postoperative period. Patologiya Krovoobrascheniya i Kardiokhirurgiya, 2017, no. 2, pp. 77-84. (In Russ.) doi: 10.21688-1681-3472-2017-2-77-84.

3. Kozlov I.А., Krichevskiy L.А., Dzybinskaya E.V. et al. The effect of sevoflurane on central and intracardiac hemodynamics. Almanakh Anesteziologii i Reanimatologii, 2007, no. 7, pp. 33-34. (In Russ.)

4. Likhvantsev V.V., Skripkin Yu.V., Iyin Yu.V. et al. Mechanisms of action and main effects of halogenated anesthetics. Vestnik Intensivnoy Terapii, 2013, no. 3, pp. 44-51. (In Russ.)

5. Mescheryakov А.V., Kozlov I.А., Ruzaykina T.I. et al. Lipid peroxidation in open heart surgery. Anesteziologiya i Reanimatologiya, 1990, no. 1, pp. 19-28. (In Russ.)

6. Molchan N.S., Polushin Yu.S., Zhloba А.А. et al. Impact of anesthesia with prolonged use of desflurane and sevoflurane on the cardiac function in coronary artery bypass graft surgeries with cardiopulmonary bypass. Messenger of Anesthesiology and Resuscitation, 2017, vol. 14, no. 4, pp. 23-31. (In Russ.) doi 10.21292/2078-5658-2017-14-4-23-31.

7. Moroz V.V., Borisov K.Yu., Grebenchikov O.А. et al. Anesthetic pre-conditioning of myocardium and some biochemical markers of cardiac and coronary failure after aortocoronary bypass. Obschaya Reanimatologiya, 2013, no. 5, pp. 29-35. (In Russ.) doi: 10.15360/1813-9779-2013-5-29.

8. Filippovskaya Zh.S., Gerasimenko O.N., Zinovkin R.А. et al. Oxidative stress and early post-operative complications in cardiac surgery. Messenger of Anesthesiology and Resuscitation, 2016, no. 6, pp. 13-21. (In Russ.) DOI 10.21292/2078-5658-2016-13-6-13-21.

9. ASA Physical Status Classification System, October 2014. Available at: https://www.asahq.org/resources/clinical-information/asa-physical-status-classification-system. AccessedAugust20, 2020.

10. Baikoussis N.G., Papakonstantinou N.A., Verra C. et al. Mechanisms of oxidative stress and myocardial protection during open-heart surgery. Ann. Cardiac Anaesth., 2015, vol. 18, no. 4, pp. 555-564. doi: 10.4103/0971-9784.166465.

11. Callister M.E., Burke-Gaffney A., Quinlan G.J. et al. Extracellular thioredoxin levels are increased in patients with acute lung injury. Thorax, 2006, vol. 61, no. 6, pp. 521–527. doi:10.1136/thx.2005.053041.

12. Du S., Zeng X., Tian J. et al. Advanced oxidation protein products in predicting acute kidney injury following cardiac surgery. Biomarkers, 2014, vol. 20, no. 3, pp. 206-211. doi: 10.3109/1354750X.2015.1062917.

13. Edmunds L.H. Cardiopulmonary bypass after 50 years. New Engl. J. Med., 2004, vol. 351, no. 16, pp. 1603–1606. doi: 10.1056/NEJMp048212.

14. Esterbauer H., Schaur R.J., Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med., 1991, no. 11, pp. 81-128. doi: 10.1016/0891-5849(91)90192-6.

15. Guo-han C., Guo J., Hong X. et al. Role of creatine phosphate as a myoprotective agent during coronary artery bypass graft in eldery patients. Coronary Artery Dis., 2013, vol. 24, no. 1, pp. 48‒53. doi: 10.1097/MCA.0b013e32835aab95.

16. Hawkins C.L., Davies M.J. Generation and propagation of radical reactions on proteins. Biochim. Biophys. Acta., 2001, vol. 1504, pp. 196–219 DOI: 10.1016/S0005-2728(00)00252-8.

17. Hayashi Y., Sawa Y., Fukuyama N. et al. Leukocyte-depleted terminal blood cardioplegia provides superior myocardial protective effects in association with myocardium-derived nitric oxide and peroxynitrite production for patients undergoing prolonged aortic crossclamping for more than 120 minutes. J. Thorac. Cardiovasc. Surg., 2003, vol. 126, pp. 1813-1821. doi: 10.1016/s0022-5223(03)01282-0.

18. Hayashi Y., Sawa Y., Ohtake S. et al. Peroxynitrite formation from human myocardium after ischemia-reperfusion during open heart operation. Ann. Thorac. Surg., 2001, vol. 72, pp. 571-576. doi: 10.1016/S0003-4975(01)02668-6.

19. Kirklin J.K., McGiffin D.C. Early complications following cardiac surgery. Cardiovasc. Clin., 1987, vol. 17, no. 3, pp. 321-343. PMID: 3555815,

20. Kita T., Kume N., Minami M. et al. Role of oxidized LDL in atherosclerosis. Ann. N. Y. Acad. Sci., 2001, vol. 947, pp. 199-205. doi: 10.1111/j.1749-6632.2001.tb03941.x.

21. Kokita N., Hara A. Propofol attenuates hydrogen peroxide-induced mechanical and metabolic derangements in the isolated rat heart. Anesthesiology, 1996, vol. 84, no. 1, pp. 117‒127. doi: 10.1097/00000542-199601000-00014.

22. Lamb N.J., Gutteridge J.M., Baker C. et al. Oxidative damage to proteins of bronchoalveolar lavage fluid in patients with acute respiratory distress syndrome: evidence for neutrophil-mediated hydroxylation, nitration, and chlorination. Crit. Care Med., 1999, vol. 27, no. 9, pp. 1738–1744. doi: 10.1097/00003246–199909000–00007.

23. Likhvantsev V.V., Landoni G., Levikov D.I. et al. Sevoflurane versus total intravenous anesthesia for isolated coronary artery bypass surgery with cardiopulmonary bypass: a randomized trial. J. Cardiothorac. Vasc. Anesth., 2016, vol. 30, no. 5, pp. 1221‒1227. doi: 10.1053/j.jvca.2016.02.030.

24. Matata B.M., Sosnowski A.W., Galinanes M. Off-pump bypass graft operation significantly reduces oxidative stress and inflammation. Ann. Thorac. Surg., 2000, vol. 69, pp. 785-791. doi: 10.1016/s0003-4975(99)01420-4.

25. Nashef S.A., Roques F., Sharples L.D. et al. EuroSCORE II. Eur. J. Cardiothorac. Surg., 2012, vol. 41, no. 4, pp. 734–745. doi: 10.1093/ejcts/ezs043.

26. Ochoa J.J, Vilchez M.J., Mataix J. et al. Oxidative stress in patients undergoing cardiac surgery: comparative study of revascularization and valve replacement procedures. J. Surg. Research, 2003, vol. 111, no. 2, pp. 248‒254. doi: 10.1016/S0022-4804(03)00106-9.

27. Pagel P.S. The discovery of myocardial preconditioning using volatile anesthetics: a history and contemporary clinical perspective. J. Cardiothorac. Vasc. Anesth., 2018, vol. 32, no. 3, pp. 1112–1134. doi: 10.1053/j.jvca.2017.12.029.

28. Piccinini A.M., Midwood K.S. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm., 2010, vol. 2010, pp. 672395 doi: 10.1155/2010/672395.

29. Quinlan G.J., Lamb N.J., Evans T.W. et al. Plasma fatty acid changes and increased lipid peroxidation in patients with adult respiratory distress syndrome. Crit. Care Med., 1996, vol. 24, no. 2, pp. 241-246. doi: 10.1097/00003246-199602000-00010.

30. Sayin M.M., Ozatamer O., Taşöz R. et al. Propofol attenuates myocardial lipid peroxidation during coronary artery bypass grafting surgery. Br. J. Anaesth., 2002, vol. 89, no. 2, pp. 242‒246. doi: 10.1093/bja/aef173.

31. Türker F.S., Doğan A., Ozan G. et al. Change in free radical and antioxidant enzyme levels in the patients undergoing open heart surgery with cardiopulmonary bypass. Oxid. Med. Cell. Longev., 2016, vol. 2, pp. 1783728. doi: 10.1155/2016/1783728.


Review

For citations:


Gerasimenko O.N., Grebenchikov O.A., Skripkin Yu.V., Onischenko O.R., Likhvantsev V.V., Ovezov A.M. The impact of anesthesia method on the severity of oxidative stress during coronary artery bypass grafting with cardiopulmonary bypass. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2020;17(6):7-14. (In Russ.) https://doi.org/10.21292/2078-5658-2020-17-6-7-14



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)