Preview

Messenger of ANESTHESIOLOGY AND RESUSCITATION

Advanced search

Systemic perfusion assessment in patients with univentricular hemodynamics based on blood gas parameters

https://doi.org/10.21292/2078-5658-2020-17-3-6-16

Abstract

The objective: to identify laboratory markers of systemic perfusion in newborns with functional single ventricle on mechanical ventilation after surgical correction.
Subjects and methods. Blood gas parameters were retrospectively analyzed in 52 newborns with congenital heart defects with univentricular hemodynamic after surgical correction. All samples were divided into three groups based on arterial blood saturation (SaO2): Group 1 – hypoxia (SaO2 ≤ 65%); Group 2 – normoxemia (SaO2 = 65-85%); Group 3 – hyperoxemia (SaO2 > 85%). Stroke volume and cardiac index were evaluated with echocardiography. The oxygen consumption and carbon metabolism were evaluated by arterial and venous blood gases.
Results. The mixed central venous pO2 (PvO2) > 29.5 mm Hg, mixed central venous O2 (SvO2) > 54.5%, arteriovenous difference in saturation (Sa-vO2) < 15.8%, total oxygen content in venous blood (CvO2) > 119 ml/l, oxygen extraction ratio (O2ER) < 19% and the arteriovenous difference in partial pressure of carbon dioxide (dPCO2) < 5.4 mm Hg are cut off criteria for adequate systemic perfusion. PvO2 < 26 mm Hg, SvO2 < 44.5%, Sa-vO 2 > 27%, CvO2 < 88 ml/l, O2ER > 27.7%, dPCO2> 7.9 mm Hg have been associated with decreased systemic perfusion. The logistic regression model including combination of O2ER and dPCO2 predicts adequate systemic flow accuracy of 94.3% (sensitivity 87.5%, specificity 94.7%, p = 0.001). Graphics allow to adapt the mathematical model to clinical practice to verify systemic hypoperfusion in newborns with functional single ventricle.
Conclusion: The following cut off parameters allow to assess systemic perfusion in newborns with functional single ventricle: PvO2, SvO2, CvO2, Sa-vO 2, O2ER, and dPCO2. The model for predicting the adequacy of systemic perfusion can be used as an effective tool to monitor hemodynamic status in newborns with functional single ventricle.

About the Authors

A. B. Naumov
St. Petersburg State Pediatric Medical University
Russian Federation

Aleksey B. Naumov - Candidate of Medical Sciences, Associate Professor of Anesthesiology, Intensive Care and Emergency Pediatrics Department within Post-Graduate and Continuing Professional Development Faculty

2A, Litovskaya St., St. Petersburg, 194100



Yu. S. Polushin
Pavlov First Saint Petersburg State Medical University
Russian Federation

Yury S. Polushin - Doctor of Medical Sciences, Academician of RAS, Pro-Rector for Research, Head of Research Clinical Center of Anesthesiology and Intensive Care, Head of Anesthesiology and Intensive Care Department

6-8B, Lva Tolstogo St., St. Petersburg, 197022

 



G. G. Khubulava
Pavlov First Saint Petersburg State Medical University
Russian Federation

Gennadiy G. Khubulava - Doctor of Medical Sciences, Academician of RAS, Chief Cardiac Surgeon of the North-Western Federal District of the Russian Federation, Head of Faculty Surgery Department

6-8B, Lva Tolstogo St., St. Petersburg, 197022



Yu. S. Аleksandrovich
St. Petersburg State Pediatric Medical University
Russian Federation

Yury S. Аleksandrovich- Doctor of Medical Sciences, Professor, Pro-Rector for Post-Graduate and Continuing Professional
Education and Regional Public Health Development, Head of Anesthesiology, Intensive Care and Emergency Pediatrics Department within Post-Graduate and Continuing Professional Development Faculty

2A, Litovskaya St., St. Petersburg, 194100



S. P. Marchenko
Pavlov First Saint Petersburg State Medical University
Russian Federation

Sergey P. Marchenko - Doctor of Medical Sciences, Professor of Cardiovascular Surgery Department

6-8B, Lva Tolstogo St., St. Petersburg, 197022



K. V. Pshenisnov
St. Petersburg State Pediatric Medical University
Russian Federation

Konstantin V. Pshenisnov - Candidate of Medical Sciences, Associate Professor of Anesthesiology, Intensive Care
and Emergency Pediatrics Department within Post-Graduate and Continuing Professional Development Faculty

2A, Litovskaya St., St. Petersburg, 194100



N. G. Pilyugov
St. Petersburg State Pediatric Medical University
Russian Federation

Nikolay G. Pilyugov - Physician of Emergency Care Unit for Children with Cardiac Surgical Pathology

2A, Litovskaya St., St. Petersburg, 194100



References

1. Seliverstova А.А., Savenkova N.D., Khubulava G.G. et al. Acute kidney injury in newborns and infants with congenital heart defects after cardiac surgery. Nephrologiya, 2017, vol. 21, no. 3, pp. 54-60. (In Russ.)

2. Unguryanu T.N., Grzhibovskiy А.M. Brief recommendations on data description, statistical analysis and presentation in scientific publications. Ekologiya Cheloveka, 2011, no. 5, pp. 55-60. (In Russ.)

3. Khubulava G.G., Marchenko S.P., Naumov А.B. et al. Blood gas composition in newborns with impaired systemic perfusion after correction of congenital heart defects and parallel circulation. Detskie Bolezni Serdtsa i Sosudov, 2019, vol. 52, no. 1, pp. 43‒55. (In Russ.) doi: https://doi.org/10.24022/1810-0686-2019-16-1-43-55.

4. Khubulava G.G., Naumov А.B., Marchenko S.P. et al. Blood gas composition in newborns with low cardiac output syndrome after cardiac surgery. Bull. Bakoulev Cent. Cardiovascular Dis, 2018, vol. 19, no. 5, pp. 676‒687. (In Russ.) doi:10.24022/1810-0694-2018-19-5-676-687.

5. Khubulava G.G., Naumov А.B., Marchenko S.P. et al. Theoretical models of hemodynamics and gas exchange during univentricular circulation. Patologiya Krovoobrascheniya i Kardiokhirurgiya, 2019, vol. 23, no. 3, pp. 65. (In Russ.) doi:10.21688/1681-3472-2019-3-65-75.

6. Ashburn D.A., McCrindle B.W., Tchervenkov C.I. Outcomes after the Norwood operation in neonates with critical aortic stenosis or aortic valve atresia. J. Thorac. Cardiovasc. Surg., 2003, vol. 125, no. 5, pp. 1070‒1082. doi:10.1067/mtc.2003.183.

7. Barnea O., Austin E.H., Richman B. et al. Balancing the circulation: Theoretic optimization of pulmonary/systemic flow ratio in hypoplastic left heart syndrome. J. Am. Coll. Cardiol., 1994, vol. 24, no. 5, pp. 1376‒1381. doi:10.1016/0735-1097(94)90123-6.

8. Barnea O., Santamore W.P., Rossi A. et al. Estimation of oxygen delivery in newborns with a univentricular circulation. 1998, pp. 1407‒1414.

9. Bradley S.M., Atz A.M. Postoperative management: The role of mixed venous oxygen saturation monitoring. Pediatr. Card. Surg. Annu., 2005, vol. 8, no. 1, pp. 22‒27. doi:10.1053/j.pcsu.2005.01.002.

10. Cohen M.S., Maxey D.M., Mahle W.T. et al. Hypoplastic Left Heart Syndrome Current Considerations and Expectations. J. Am. Coll. Cardiol., 2012, vol. 59, no. 1. doi:10.1016/j.jacc.2011.09.022.

11. DeWaal K.A. The methodology of doppler-derived central blood flow measurements in newborn infants. Int. J. Pediatr., 2012, no. 3, pp. 1‒13. doi:10.1155/2012/680162.

12. Furqan M., Hashmat F., Amanullah M. et al. Venoarterial PCO2 difference: a marker of postoperative cardiac output in children with congenital heart disease. J. Coll. Physicians. Surg. Pak., 2009, vol. 19, no. 10, pp. 640‒643. doi:10.2009/JCPSP.640643.

13. Ghanayem N.S., Hoffman G.M., Mussatto K.A. et al. Perioperative monitoring in high-risk infants after stage 1 palliation of univentricular congenital heart disease. J. Thorac. Cardiovasc. Surg., 2010, vol. 140, no. 4, pp. 857‒863. doi:10.1016/j.jtcvs.2010.05.002.

14. Hoffman G.M., Ghanayem N.S., Kampine J.M. et al. Venous saturation and the anaerobic threshold in neonates after the Norwood procedure for hypoplastic left heart syndrome. Ann. Thorac. Surg., 2000, vol. 70, no. 5, pp. 1515‒1520. http://www.ncbi.nlm.nih.gov/pubmed/11093480. Accessed January 26, 2019.

15. Klauwer D., Neuhaeuser C., Thul J. et al. Practical handbook on pediatric cardiac intensive care therapy (Klauwer D., Neuhaeuser C., Thul J., Zimmermann R., eds.). Cham: Springer International Publishing. 2019. doi:10.1007/978-3-319-92441-0.

16. Li J., Bush A., Schulze-Neick I. et al. Measured versus estimated oxygen consumption in ventilated patients with congenital heart disease: the validity of predictive equations. Crit. Care Med., 2003, vol. 31, no. 4, pp. 1235‒1240. doi:10.1097/01.CCM.0000060010.81321.45.

17. Li J., Zhang G., McCrindle B.W. et al. Profiles of hemodynamics and oxygen transport derived by using continuous measured oxygen consumption after the Norwood procedure. J. Thorac. Cardiovasc. Surg., 2007, vol. 133, no. 2. doi:10.1016/j.jtcvs.2006.09.033.

18. Lundell B.P., Casas M.L., Wallgren C.G. Oxygen consumption in infants and children during heart catheterization. Pediatr. Cardiol., 1996, vol. 17, no. 4, pp. 207‒213. doi:10.1007/BF02524795.

19. Mahle W.T., Spray T.L., Wernovsky G. et al. Survival after reconstructive surgery for hypoplastic left heart syndrome: A 15-year experience from a single institution. Circulation, 2000, vol. 102, no. 19 (suppl. 3), pp. III136‒III141. http://www.ncbi.nlm.nih.gov/pubmed/11082376. Accessed August 30, 2018.

20. Mallat J., Lemyze M., Meddour M. et al. Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. Ann. Intens. Care, 2016, vol. 6, no. 1, pp. 1‒9. doi:10.1186/s13613-016-0110-3.

21. Naito Y., Aoki M., Watanabe M. et al. Factors affecting systemic oxygen delivery after norwood procedure with Sano modification. Ann. Thorac. Surg., 2010, vol. 89, no. 1, pp. 168‒173. doi:10.1016/j.athoracsur.2009.09.032.

22. Neunhoeffer F., Hofbeck M., Schlensak C. et al. Perioperative cerebral oxygenation metabolism in neonates with hypoplastic left heart syndrome or transposition of the great arteries. Pediatr. Cardiol., 2018, vol. 39, no. 8, pp. 1681‒1687. doi:10.1007/s00246-018-1952-2.

23. Rhodes L.A., Erwin W.C., Borasino S. et al. Central venous to arterial CO2 difference after cardiac surgery in infants and neonates. Pediatr. Crit. Care Med., 2017, vol. 18, no. 3, pp. 228‒233. doi:10.1097/PCC.0000000000001085.

24. Schranz D., Akintuerk H., Voelkel N. "End-stage" heart failure therapy: potential lessons from congenital heart disease: from pulmonary artery banding and interatrial communication to parallel circulation. Heart, 2016, no. 0, pp. 1‒6. doi:10.1136/heartjnl-2015-309110.

25. Taeed R., Schwartz S.M., Pearl J.M. et al. Unrecognized pulmonary venous desaturation early after Norwood palliation confounds Gp:Gs assessment and compromises oxygen delivery. Circulation, 2001, vol. 103, no. 22, pp. 2699‒2704. http://www.ncbi.nlm.nih.gov/pubmed/11390340. Accessed January 26, 2019.

26. Tweddell J.S., Ghanayem N.S., Mussatto K.A. et al. Mixed venous oxygen saturation monitoring after stage 1 palliation for hypoplastic left heart syndrome. Ann. Thorac. Surg., 2007, vol. 84, no. 4, pp. 1301‒1311. doi:10.1016/j.athoracsur.2007.05.047.

27. Unal I. Defining an optimal cut-point value in ROC analysis: An alternative approach. Comput. Math. Methods Med., 2017, no. 1, pp. 1‒14. doi:10.1155/2017/3762651.

28. Van Der Hoeven M.A., Maertzdorf W.J., Blanco C.E. Continuous central venous oxygen saturation (ScvO2) measurement using a fibre optic catheter in newborn infants. Arch. Dis. Child., 1996, vol. 74, pp. 177‒181.

29. Villa C.R., Marino B.S., Jacobs J.P. et al. Intensive care and perioperative management of neonates with functionally univentricular hearts. World J. Pediatr. Congenit. Heart Surg., 2012, vol. 3, no. 3, pp. 359‒363. doi:10.1177/2150135111433473.

30. Vrancken S.L., VanHeijst A.F., DeBoode W.P. Neonatal hemodynamics: from developmental physiology to comprehensive monitoring. Front Pediatr., 2018, vol. 6, no. 4, pp. 1‒15. doi:10.3389/fped.2018.00087.


Review

For citations:


Naumov A.B., Polushin Yu.S., Khubulava G.G., Аleksandrovich Yu.S., Marchenko S.P., Pshenisnov K.V., Pilyugov N.G. Systemic perfusion assessment in patients with univentricular hemodynamics based on blood gas parameters. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2020;17(3):6-16. (In Russ.) https://doi.org/10.21292/2078-5658-2020-17-3-6-16



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)