IMMUNOMODULATION, IMMUNOSTIMULATION AND EXTRACORPOREAL BLOOD PURIFICATION IN SEPSIS: POTENTIALLY BENEFICIAL TECHNIQUES IN CARDIAC SURGERY
https://doi.org/10.21292/2078-5658-2019-16-2-96-106
Abstract
Sepsis is a potentially life-threatening state caused by an infection and an inadequate, dysregulated host immune response. Focusing on cardiac surgery, the prevalence of sepsis is low, after procedures situated between 0.39% and 2.5%. Nevertheless, the current life-expectancy of septic patients are poor, mortality varying from 65% to 79%.
Pathophysiology and immunopathology of sepsis is still unclear. Actually we consider sepsis as a dynamic process with two different sides. Both immune hyperactivity and immune suppression are presented during the progression. Although immunomodulation is not a fresh idea in the treatment of sepsis. Currently the diagnosis of sepsis is based on clinical signs. The biomarkers and molecular diagnostic tools are insufficient.
The actual concept of immunopathophysiology in sepsis is based on the idea of a dynamic parallel immune response, both pro- and antiinflammatory processes are presented from the beginning. Equilibrium may be the key in the immune response of sepsis. Immune system tries to maintain the homeostatic environment during sepsis via pro- and antiinflammatory processes. In case of an unbalanced, dysregulated and radical (in both directions) response mortality become frightfully high. Infectional source control, adequate antibiotic therapy and organ support are the three corner stones in the treatment of sepsis since the definition of sepsis born.
In our review we would like to add a detailed overview on two promising modalities of immunomodulation: (1) extracorporeal blood purification; (2) immunostimulation.
The purpose of present article is to give an up-to-date, comprehensive review on the utilization of extracorporeal blood purification techniques and immunostimulation in septic patient after cardiac surgery.
About the Authors
P. GianlucaItaly
Potenza
Á Nagy
Italy
Potenza;
Budapest, Hungary
References
1. Ankawi G., Mauro N., Jingxiao Z. et al. Extracorporeal techniques for the treatment of critically ill patients with sepsis beyond conventional blood purification therapy: the promises and the pitfalls // 2019. – https://doi.org/10.1186/s13054-018-2181-z.
2. Annane D., Bellissant E., Cavaillon J.-M. Septic shock // Lancet. – 2005. – Vol. 365 (9453). – P. 63–78. https://doi.org/10.1016/S0140-6736(04)17667-8.
3. Antonopoulou A., Giamarellos-Bourboulis E. J. Immunomodulation in sepsis: state of the art and future perspective // Immunotherapy. – 2011. – https://doi.org/10.2217/imt.10.82.
4. Berlot G., Rossini P., Turchet F. Biology of Immunoglobulins // Translational Medicine @ UniSa. – 2019. – Vol. 11. – P. 24–27. http://www.ncbi.nlm.nih.gov/pubmed/25674545.
5. Bo L., Fei W., Jiali Z. et al. Granulocyte-Colony Stimulating Factor (G-CSF) and Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) for Sepsis: A meta-analysis // Crit. Care. – 2011. – Vol. 15 (1). – R58. https://doi.org/10.1186/cc10031.
6. Born F., Nestler F., Nierhaus A. et al. International registry on the use of the CytoSorb adsorber in ICU patients // Intensivmedizin Und Notfallmedizin. – 2017. – https://doi.org/10.1007/s00063-017-0342-5.
7. Calabrò M. G., Febres D., Recca G. et al. Blood purification with cytosorb in critically ill patients: single-center preliminary experience // Artificial Organs. – 2019. – Vol. 43, № 2. – P. 189–94. https://doi.org/10.1111/aor.13327.
8. Carlo J., Di V., Alexander S. R. Hemofiltration for cytokine-driven illnesses: the mediator delivery hypothesis // The International Journal of Artificial Organs. – 2005. – Vol. 28, № 8. – Р. 777–786. http://www.ncbi.nlm.nih.gov/pubmed/16211527.
9. Cohen J. The Immunopathogenesis of Sepsis // Nature. – 2002. – Vol. 420. – P. 885–891. https://doi.org/10.1038/nature01326.
10. Cui J., Xuxia W., Haijin L. et al. The clinical efficacy of intravenous igm-enriched immunoglobulin (pentaglobin) in sepsis or septic shock: a meta-analysis with trial sequential analysis // Ann. Intens. Care. – 2019. – Vol. 9, № 1. https://doi. org/10.1186/s13613-019-0501-3.
11. Delano M. J., Ward P. A. Sepsis-induced immune dysfunction: can immune therapies reduce mortality? // J. Clin. Investigation. – 2016. – Vol. 126, № 1. – P. 23–31. https://doi.org/10.1172/JCI82224.
12. Denstaedt S. J., Singer B. H., Standiford T. J. Sepsis and nosocomial infection: patient characteristics, mechanisms, and modulation // Frontiers in Immunology. – 2018. – Vol. 9, № 2. – P. 24–46. https://doi.org/10.3389/fimmu.2018.02446.
13. Dries D. J., Jurkovich G. J., Maier R. V. et al. Effect of interferon gamma on infection-related death in patients with severe injuries. a randomized, double-blind, placebo-controlled trial // Archives of Surgery (Chicago, Ill.: 1960). – 1994. – Vol. 129, № 10. – P. 1031–1042. http://www.ncbi.nlm.nih.gov/pubmed/7944932.
14. Fan X., Zheng L., He J. et al. Alterations of dendritic cells in sepsis: featured role in immunoparalysis // BioMed Research International. – 2015. https://doi.org/10.1155/2015/903720.
15. Francisco-Cruz A., Aguilar-Santelises M., Ramos-Espinosa O. et al. Granulocyte-macrophage colony-stimulating factor: not just another haematopoietic growth factor // Medical Oncology. – 2014. – Vol. 31, № 1. – P. 774. https://doi.org/10.1007/s12032-013-0774-6.
16. Francois B., Jeannet R., Daix T. et al. Interleukin-7 restores lymphocytes in septic shock: The IRIS-7 Randomized Clinical Trial // JCI Insight. – 2018. – Vol. 3, № 5. https://doi.org/10.1172/jci.insight.98960.
17. Friesecke S., Stecher S.-S., Gross S. et al. Extracorporeal cytokine elimination as rescue therapy in refractory septic shock: a prospective single-center study // J. Artificial Organs. – 2017. – Vol. 20, № 3. – P. 252–259. https://doi.org/10.1007/s10047-017-0967-4.
18. Hawchar F., Ildiko L., Nandor O. et al. Extracorporeal cytokine adsorption in septic shock: a proof of concept randomized, controlled pilot study // J. Crit. Care. – 2019. – Vol. 49. – P. 172–178. https://doi.org/10.1016/j.jcrc.2018.11.003.
19. Honore P. M., Matson J. R. Extracorporeal removal for sepsis: acting at the tissue level - the beginning of a new era for this treatment modality in septic shock // Crit. Care Med. – 2004. – Vol. 32, № 3. – P. 896–897. http://www.ncbi.nlm.nih.gov/pubmed/15090989.
20. Kakoullis L., Pantzaris N.-D., Platanaki C. et al. The use of IgM-Enriched immunoglobulin in adult patients with sepsis // J. Crit. Care. – 2018. – Vol. 47. – P. 30–35. https://doi.org/10.1016/j.jcrc.2018.06.005.
21. Kogelmann K., Jarczak D., Scheller M. et al. Hemoadsorption by CytoSorb in septic patients: a case series // Critical Care (London, England). – 2017. – Vol. 21, № 1. – https://doi.org/10.1186/s13054-017-1662-9.
22. Kumar H., Taro K., Akira S. Pathogen recognition by the innate immune system.” international reviews of immunology. – 2011. – Vol. 30, № 1. – P. 16–34. https://doi.org/10.3109/08830185.2010.529976.
23. Leentjens J., Kox M., van der Hoeven J. G. et al. Immunotherapy for the adjunctive treatment of sepsis: from immunosuppression to immunostimulation. time for a paradigm change? // Am. J. Respir. Crit. Care Med. – 2013. – Vol. 187, № 12. – P. 1287–1293. https://doi.org/10.1164/rccm.201301-0036CP.
24. Leligdowicz A., Matthay M. A. Heterogeneity in sepsis: new biological evidence with clinical applications // Crit. Care (London, England). – 2019. – Vol. 23, № 1. https://doi.org/10.1186/s13054-019-2372-2.
25. Lever A., Mackenzie I. Sepsis: definition, epidemiology, and diagnosis // BMJ. – 2007. – Vol. 335 https://doi.org/10.1136/BMJ.39346.495880.AE.
26. Levy M. M., Evans L. E., Andrew Rhodes. The surviving sepsis campaign bundle: 2018 update // Critical Care Medicine. – 2018. – https://doi.org/10.1097/CCM.0000000000003119.
27. Martin G. S., Mannino D. M., Eaton S. et al. The epidemiology of sepsis in the united states from 1979 through 2000–2003 // New Engl. J. Med. – Vol. 348, № 16. – P. 1546–1554. https://doi.org/10.1056/NEJMoa022139.
28. Mayr F. B., Yende S., Angus D. C. Epidemiology of severe sepsis // Virulence. – 2014. – Vol. 5, № 1. https://doi.org/10.4161/VIRU.27372.
29. Nemeth E., Kovacs E., Racz K. et al. Impact of intraoperative cytokine adsorption on outcome of patients undergoing orthotopic heart transplantation-an observational study // Clinical Transplantation. – 2018. – Vol. 32, № 4. – Р. e13211. https://doi.org/10.1111/ctr.13211.
30. Oliveira D. C., de Oliveira F. J. B., Silva R. F. et al. Sepsis in the postoperative period of cardiac surgery: problem description // Arquivos Brasileiros de Cardiologia. – 2010. – Vol. 94, № 3. – P. 332–336, 352–356. http://www.ncbi.nlm.nih.gov/pubmed/20730262.
31. Otto G. P., Sossdorf M., Claus R. A. et al. The late phase of sepsis is characterized by an increased microbiological burden and death rate // Critical Care. – 2011. – Vol. 15, № 4. – Р. R183. https://doi.org/10.1186/cc10332.
32. Paternoster G., Guarracino F. Sepsis after cardiac surgery: from pathophysiology to management // J. Cardioth. Vasc. Anesthesia. – 2016. – https://doi.org/10.1053/j.jvca.2015.11.009.
33. Patil N. K., Bohannon J. K., Sherwood E.R. Immunotherapy: a promising approach to reverse sepsis-induced immunosuppression // Pharmacological Research. – 2016. – Vol. 111. https://doi.org/10.1016/J.PHRS.2016.07.019.
34. Rello J., Valenzuela-Sánchez F., Ruiz-Rodriguez M. et al. Sepsis: a review of advances in management.” advances in therapy. – 2017. https://doi.org/10.1007/s12325-017-0622-8.
35. Rezoagli E., Masterson C. H., McCarthy S. D. et al. Sepsis: Therapeutic Potential of Immunosuppression versus Immunostimulation // Am. J. Respir. Cell Molec. Biology. – 2019. – Vol. 60, № 1. – P. 128–130. https://doi.org/10.1165/rcmb.2018-0284RO.
36. Rhodes A., Evans L. E., Alhazzani W. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016 // Intens. Care Med. – 2017. – Vol. 43, № 3. – P. 304–377. https://doi. org/10.1007/s00134-017-4683-6.
37. Rimmele T., Kellum J. A. Clinical review: blood purification for sepsis // Crit. Care. – 2011. – Vol. 15, № 1. – P. 205. https://doi.org/10.1186/cc9411.
38. Schädler D. C., Porzelius A. J., Marx G. et al. A multicenter randomized controlled study of an extracorporeal cytokine hemoadsorption device in septic patients // Crit. Care. – 2013. – Vol. 17, Suppl. 2. – P. 62. https://doi.org/10.1186/CC12000.
39. Schadler D., Pausch C., Heise D. et al. The effect of a novel extracorporeal cytokine hemoadsorption device on IL-6 elimination in septic patients: a randomized controlled trial // PLOS ONE. – 2017. ‒ Vol. 12, № 10. ‒ e0187015. https://doi.org/10.1371/journal.pone.0187015.
40. Schwab I., Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? // Nature Reviews Immunology. – 2013. – Vol. 13, № 3. – P. 176–189. https://doi.org/10.1038/nri3401.
41. Shankar-Hari M., Spencer J., Sewell W. A. et al. Bench-to-bedside review: immunoglobulin therapy for sepsis – biological plausibility from a critical care perspective // Crit. Care. – 2011. – Vol. 16, № 2. – P. 206. https://doi.org/10.1186/cc10597.
42. Taccone F. S., Stordeur P., de Backer D. et al. γ-Globulin levels in patients with community-acquired septic shock // Shock. – 2009. – Vol. 32, № 4. – P. 379–385. https://doi.org/10.1097/SHK.0b013e3181a2c0b2.
43. Ton A., Kox M., Abdo W. F. et al. Precision Immunotherapy for Sepsis // Front. Immunol. – 2018. https://doi.org/10.3389/fimmu.2018.01926.
44. Venet F., Gebeile R., Bancel J. et al. Assessment of plasmatic immunoglobulin g, a and m levels in septic shock patients // Internat. Immunopharmacology. – 2011. – Vol. 11, № 12. – P. 2086–2090. https://doi.org/10.1016/j.intimp.2011.08.024.
45. Venet F., Lukaszewicz A.-C., Payen D. et al. Monitoring the immune response in sepsis: a rational approach to administration of immunoadjuvant therapies // Curr. Opin. Immunology. – 2013. – Vol. 25, № 4. – P. 477–483. https://doi.org/10.1016/j.coi.2013.05.0
46. Vincent J.-L., Wasineenart M. Expert Review of Anti-infective therapy non-antibiotic therapies for sepsis: an update. – 2019. https://doi.org/10.1080/14787210.2019.1581606.
47. Welte T. R., Dellinger P., Ebelt H. et al. Efficacy and safety of trimodulin, a novel polyclonal antibody preparation, in patients with severe community-acquired pneumonia: a randomized, placebo-controlled, double-blind, multicenter, phase ii trial (CIGMA Study) // Intens. Care Med. – 2018. – Vol. 44, № 4. – P. 438–448. https://doi.org/10.1007/s00134-018-5143-7.
48. Williams M. A., Withington S., Newland A.C. Monocyte anergy in septic shock is associated with a predilection to apoptosis and is reversed by granulocyte-macrophage colony-stimulating factor ex vivo // J. Infect. Diseases. – 1998. – Vol. 178, № 5. – P. 1421–1433. http://www.ncbi.nlm.nih.gov/pubmed/9780264.
49. Yaroustovsky M., Abramyan M., Krotenko N. et al. Endotoxin adsorption using polymyxin b immobilized fiber cartridges in severe sepsis patients following cardiac surgery.” the international journal of artificial organs. – 2014. – Vol. 37, № 4. – P. 299–307. https://doi.org/10.5301/ijao.5000322.
50. Zimmerman J. L., Jean-Louis V., Levy M. M. et al. Surviving sepsis campaign guidelines for management of severe sepsis and septic shock // Intens. Care Med. – 2004. – Vol. 30, № 4. – P. 536–555. https://doi.org/10.1007/s00134-004-2210-z.
Review
For citations:
Gianluca P., Nagy Á. IMMUNOMODULATION, IMMUNOSTIMULATION AND EXTRACORPOREAL BLOOD PURIFICATION IN SEPSIS: POTENTIALLY BENEFICIAL TECHNIQUES IN CARDIAC SURGERY. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2019;16(2):96-106. (In Russ.) https://doi.org/10.21292/2078-5658-2019-16-2-96-106