THE CHANGES OF THE ELECTROPHYSIOLOGICAL PROPERTIES OF NEURONS BY THE ACTION OF SEVOFLURANE AND THEIR ROLE IN THE MECHANISMS OF PRECONDITIONING AND CYTOPROTECTION
https://doi.org/10.21292/2078-5658-2015-12-3-19-28
Abstract
The changes of the intracellular potentials by the action of sevoflurane were studied for the diagnostic intact neurons of the isolated cerebrospinal axis of the Planorbarius corneus using intracellular electrodes. There observed a two-phase reaction of the neurons de- and hyperpolarization. The sevoflurane concentration of 2 mM depolarized the neurons (to 5 mV), the depolarization was interchanged with the mild hyperpolarization (at 2-5 mV). The impulse activity rate (IA) increased under depolarization, while decreased under hyperpolarization, the parameters of the action potentials (AP) changed slightly. The inversive hyperpolarization occurred for 5-10 minutes upon the anesthetic elimination. There occurred the short-term and inversive depolarization of the neurons at the sevoflurane concentration of 5 mM to 9,4 ± 2,2% of the reference, while the IA rate increased, the amplitude of the action potentials decreased with their duration increase, and sometimes the AP generation was completely abrogated. On action of sevoflurane concentration of 5 mM there developed the inversive hyperpolarization of the neurons to 18,1 ± 16,9% of the reference, that lasted 15-20 minutes thereafter. The repeated neuron exposure with the same anesthetic is always reproduced followed by the florid hyperpolarization. The modulation of the electrical activity with sevoflurane (the hyperpolarization of the neurons and the decrease/termination of AP generation that evidenced the "improvement" of their functional status) may be the basis for the preconditioning, neuro- and cardioprotection.
About the Authors
A. I. VislobokovRussian Federation
Yu. S. Polushin
Russian Federation
A. Yu. Polushin
Russian Federation
V. V. Alferova
Russian Federation
References
1. Vislobokov A.I., Zvartau E.E., Polushin Yu.S. et al. Changes in intracellular potentials and ion fluxes of neurons of mollusks by extracellular and intracellular action of sevoflurane and desflurane Vestnik Anasteziol. i Reanimatol., 2015, vol. 12, no. 2, pp. 65-75. (In Russ.)
2. Vislobokov A.I., Ignatov Yu.D., Galenko-Yaroshevsky P.A. et al. Membranotropnoye deistviye pharmakologicheskikh sredstv. [Membrane-acting action of pharmaceutical substances]. St. Petersburg, Krasnodar, Prosvescheniye Yug Publ., 2010, 528 p.
3. Vislobokov A.I., Shabanov P.D. Kletochnye i molekulyarnye mekhanizmy deistviya lekarstv. Seriya: Tsitopharmakologiya. [Cellular and molecular mechanisms of drug actions. Series: Cytopharmacology]. vol. 2, St. Petersburg, Inform-Navigator Publ., 624 p.
4. Galagudza M.M. Pre- i postkonditsionorovaniye kak sposob zaschity miokarda ot ishemicheskogo i reperfusionnogo povrezhdeniya (eksperimentalnoye issledovaniye). Diss. dokt. med. nauk. [Pre and post conditioning as a way of protection of myocardium from ischemic and reperfusion lesions (experimental research)]. 14.00.16. St. Petersburg, 2007, 250 p.
5. Likhvantsev V.V., Grebenschikova O.A., Shmeleva E.A. et al. Anesthetic pre-conditioning: why the data received in the experiment are not always confirmed in the clinic. Vestnik Anasteziol. i Reanimatol., 2013, no. 4, pp. 9-15. (In Russ.)
6. Likhvantsev V.V., Ilyin Yu.V., Shmeleva E.A. et al. Impact of anesthesia method on beginning and progression of consciousness disorders in postoperative period in patients with cerebral vascular insufficiency. Vestnik Anasteziol. i Reanimatol., 2014, no. 6, pp. 5-14. (In Russ.)
7. Neyroprotektsiya. Modeli, mekhanizmy, terapya. [Neuroprotection. Models. mechanisms, therapy]. Ed. by Ber M., Zykov V., Kamchatnov P. Binom, Laboratoriya Znany Publ., 2011, 436 p.
8. Tolkunov Yu.A., Sibarov D.A., Frolov D.S. Action of primary afferent neurons of the small bowel is modulated by HNP-1 defensin by the histamine action. Sensorn. Sist., 2009, vol. 23, no. 1, pp. 79-86. (In Russ.)
9. Hamakawa T., Feng Z.P., Grigoriv N. et al. Sevoflurane induced suppression of inhibitory synaptic transmission between soma-soma paired Lymnaea neurons. J. Neurophysiol., 1999, vol. 82, no. 5, pp. 2812-2819.
10. Hemmings H.C. Neuroprotection by Na+ channel blockade. J. Neurosurg. Anesthesiol., 2004, vol. 16, pp. 100-101.
11. Hemmings H.C. Sodium channels and the synaptic mechanisms of inhaled anaesthetics. British. J. Anaesthesia, 2009, vol. 103, no. 1, pp. 61-69.
12. Hirota K., Fudjimura J., Wakasugi M. et al. Isoflurane and sevoflurane modulate inactivation kinetics of Ca2+ currents in single bullfrog atrial miocytes. Anestesiol., 1996, vol. 84, no. 2, pp. 377-383.
13. Hirota K., Roth S.H. The effects of sevoflurane on population spikes in CA1 and dentate gyrus of the rat hippocampus in vitro. Anesth. Analg., 1997, vol. 85, pp. 426-430.
14. Hu Z.Y., Liu J. Mechanism of cardiac preconditioning with volatile anaesthetics. Anaesth. Intensive Care, 2009, vol. 37, no. 4, pp. 532-538.
15. Kamatchi G.L., Chan C.K., Snutch T. et al. Volatile anesthetic inhibition of neuronal Ca2+ channel currents expressed in Xenopus oocytes. Brain Res., 1999, vol. 831, pp. 85-96.
16. Landoni G., Biondi-Zoccai G.G.L., Zangrillo A. et al. Desflurane and sevoflurane in cardiac surgery: a meta-analysis of randomized clinical trials. J.Cardiothoracic and Vascular Anesthesia, 2007, vol. 21, no. 4, pp. 502-511.
17. Landoni G., Fochi O., Tritapepe L. et al. Cardiac protection by volatile anesthetics. Minerva Anestesiol., 2009, vol. 75, no. 5, pp. 269-273.
18. Matei G., Pavlik R., McCadden T. et al. Sevoflurane improves electrophysiological recovery of rat hippocampal slice CA 1 pyramidal neurons after hypoxia. J. Neurosurg. Anesthesiol., 2002, vol. 14, pp. 293-298.
19. Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 1986, vol. 74, pp. 1124-1136.
20. Namba T., Ishii T.M., Ikeda M. et al. Inhibition of the human intermediate conductance Ca(2+)-activated K(+) channel, hIK1, by volatile anesthetics. Eur. J. Pharmacol., 2000, vol. 395, no. 2, pp. 95-101.
21. Ouyang W., Herold K.F., Hemmings H.C. Comparative effects of halogenated inhaled anesthetics on voltage-gated Na+ channel function. Anesthesiol., 2009, vol. 110, no. 3, pp. 582-590.
22. R Core Team. R: а language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria, 2014, URL http://www.R-project.org.
23. Velly L.J., Canas P.T., Guillet B.A. et al. Early anesthetic preconditioning in mixed cortical neuronal-glial cell cultures subjected to oxygen-glucose deprivation: the role of adenosine triphosphate dependent potassium channels and reactive oxygen species in sevoflurane-induced neuroprotection. Anesth. Analg., 2009, vol. 108, no. 3, pp. 955-963.
24. Weber N.C., Schlack W. Inhalational anaesthetics and cardioprotection. Handb. Exp. Pharmacol. 2008, vol. 182, pp. 187-207.
25. Weigt H.U., Kwok W.M., Rehmert G.C. et al. Voltagedependent effects of volatile anesthetics on cardiac sodium current. Anesth. Analg., 1997, vol. 84, pp. 285-293.
26. Wu J., Harata N., Akaike N. Sevoflurane-induced ionic current in acutely dissociated CA1 pyramidal neurons of the rat hippocampus. Brain. Res., 1994, vol. 645, pp. 303-308.
27. Wulf H., Ledowski T., Linstedt U. et al. Neuromuscular blocking effects of rocuronium during desflurane, isoflurane, and sevoflurane anaesthesia. Can. J. Anaesth., 1998, vol. 45, pp. 526-532.
28. Yasui Y., Masaki E., Kato F. Sevoflurane directly excites locus coeruleus neurons of rats. Anesthesiology, 2007, vol. 107, no. 6, pp. 992-1002.
Review
For citations:
Vislobokov A.I., Polushin Yu.S., Polushin A.Yu., Alferova V.V. THE CHANGES OF THE ELECTROPHYSIOLOGICAL PROPERTIES OF NEURONS BY THE ACTION OF SEVOFLURANE AND THEIR ROLE IN THE MECHANISMS OF PRECONDITIONING AND CYTOPROTECTION. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2015;12(3):19-28. (In Russ.) https://doi.org/10.21292/2078-5658-2015-12-3-19-28