CARDIOPROTECTIVE EFFECTS OF PHOSPHOCREATINE
https://doi.org/10.21292/2078-5658-2016-13-5-74-80
Abstract
Goal of the review: to review theoretical and practical aspects of using exogenous phosphocreatine in the patients with cardio-vascular disorders in various clinical situations, given that phospho-transporting system disorders are the one of pathogenic elements responsible for reduction of cardiac pumping ability.
About the Authors
V. V. LomivorotovRussian Federation
Doctor of Medical Sciences, Professor, Deputy Director for Research, Head of Anesthesiology and Intensive Care Center
M. N. Abubakirov
Russian Federation
Doctor of Anesthesiology and Intensive Care Department
E. V. Fominskiy
Russian Federation
Candidate of Medical Sciences, Doctor of Intensive Care Department for Adults
V. A. Shmyrev
Russian Federation
Candidate of Medical Sciences, Head of Anesthesiology and Intensive Care Department
References
1. Lomivorotov V.V., Shmyrev V.А., Efremov S.M. et al. Changes in troponin I content in the blood serum in adult patients with acquired valvular heart disease, having surgery with normothermal and hypothermal cardiopulmonary bypass. Vestnik Anasteziol. i Reanimatol., 2014, vol. 11, no. 1, pp. 3-10. (In Russ.)
2. Timofeev А.B., Schegolev А.V., Ryzhman N.N. Current approaches to cardiac failure management in acute myocardial infarction. Vestnik Anasteziol. i Reanimatol., 2014, vol. 11, no. 1, pp. 68-75. (In Russ.)
3. Balestrino M., Sarocchi M., Adriano E. et al. Potential of creatine or phosphocreatine supplementation in cerebrovascular disease and in ischemic heart disease. Amino Acids, 2016, Jan 21. [Epub ahead of print].
4. Bottomley P.A., Panjrath G.S., Lai S. et al. Metabolic rates of ATP transfer through creatine kinase (CK Flux) predict clinical heart failure events and death. Sci. Transl. Med., 2013, vol. 215, no. 5, pp. 215re3.
5. Braunwald E., Kloner R.A. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation, 1982, vol. 66, no. 6, pp. 1146-1149.
6. Chambers D.J., Haire K., Morley N. et al. St. Thomas’ hospital cardioplegia: enhanced protection with exogenous creatine phosphate. Ann. Thorac. Surg., 1996, vol. 61, no. 6, pp. 67-75.
7. Cleland J.G., Daubert J.C., Erdmann E. et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med., 2005, vol. 352, no. 15, pp. 1539-1549.
8. Cossolini M., Sonzogni V., Di Dedda G. et al. Paediatric cold heart surgery: experience with creatine phosphate added to cardioplegic solution. In D’Alessandro LC (ed). Heart Surgery. Roma: Casa Editrice Scientifica Internazionale. 1993, pp. 442-443.
9. Dayer M., Cowie M.R. Heart failure: diagnosis and healthcare burden. Clin. Med., 2004, vol. 4, no. 1, pp. 13-18.
10. Ferraro S., Codella C., Palumbo F. et al. Hemodynamic effects of creatine phosphate in patients with congestive heart failure: a double-blind comparison trial versus placebo. Clin. Cardiol., 1996, vol. 19, no. 9, pp. 699-703.
11. Gebhard M.M. Myocardial protection and ischemia tolerance of the globally ischemia heart. Thorac. Cardiovasc. Surg., 1990, vol. 38, no. 2, pp. 55-59.
12. Grazioli I., Strumia E. Terapia con creatina fosfato nel paziente con insufficienza cardiaca in fase di scompenso: studio policentrico. G. Ital. Ric. Clin. Ter., 1989, no. 10, pp. 39-45.
13. Hearse J. Ischemia at the crossroads? Cardiovasc. Drugs Ther., 1988, vol. 2, no. 1, pp. 9-15.
14. Horjus D.L., Oudman I., van Montfrans G.A. et al. Creatine and creatine analogues in hypertension and cardiovascular disease. Cochrane Database Syst. Rev., 2011, no. 11, pp. CD005184.
15. Iosseliani D.G., Koledinsky A.G., Kuchkina N.V. Does intracoronary injection of phosphocreatine prevent myocardial reperfusion injury following angioplasty of infarct-related artery in acute-stage of myocardial infarction? J. Interv. Cardiol., 2004, no. 6, pp. 10-14.
16. Jernberg T., Johanson P., Held C. et al. Association between adoption of evidence-based treatment and survival for patients with ST-elevation myocardial infarction. JAMA, 2011, vol. 305, no. 16, pp. 1677-1684.
17. Kolwicz S.C., Purohit S., Tian R. Cardiac Metabolism and its Interactions With Contraction, Growth, and Survival of Cardiomyocytes. Circ. Res., 2013, vol. 113, no. 5, pp. 603-616.
18. Landoni G., Zangrillo A., Lomivorotov V.V. et al. Cardiac protection with phosphocreatine: a meta-analysis. Interact. Cardiovasc. Thorac. Surg., 2016, Jun 17. [Epub ahead of print].
19. Li T., Wang N., Zhao M. Neuroprotective effect of phosphocreatine on focal cerebral ischemia-reperfusion injury. J. Biomed. Biotechnol., 2012, no. 2012, pp. 168756.
20. Lomivorotov V.V., Boboshko V.A., Chernyavsky A.M. et al. Preventive IABP use of levosimendan infusion in coronary patients with low left ventricular ejection fraction (< 35%). Patologiya krovoobrashcheniya I kardiokhirurgiya = Circulation Pathology and Cardiac Surgery, 2011, no. 2, pp. 49-54.
21. Lomivorotov V.V., Boboshko V.A., Efremov S.M. et al. Levosimendan versus an intra-aortic balloon pump in high-risk cardiac patients. J. Cardiothorac. Vasc. Anesth., 2012, vol. 26, no. 4, pp. 596-603.
22. Lomivorotov V.V., Efremov S.M., Shmirev V.A. et al. Glutamine is cardioprotective in patients with ischemic heart disease following cardiopulmonary bypass. Heart Surg. Forum, 2011, vol. 14, no. 6, pp. E384–388.
23. Lygate C.A., Bohl S., ten Hove M. et al. Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction. Cardiovasc. Res., 2012, vol. 96, no. 3, pp. 466-475.
24. Mastroroberto P., Di Tommaso L., Chello M. et al. Creatine phosphate protection of the ischemic myocardium during cardiac surgery. Current Therapeutic Research. – 1992. – № 51. – P. 37–45.
25. Melrose D.G., Dreyer B., Bentall H.H. et al. Elective cardiac arrest. Lancet, 1955, no. 269, pp. 21-22.
26. Neubauer S., Krahe T., Schindler R. et al. 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure. Circulation, 1992, vol. 86, no. 6, pp. 1810-1818.
27. Neubauer S. The failing heart – an engine out of fuel. N. Engl. J. Med., 2007, vol. 356, no. 11, pp. 1140-1151.
28. Opie L.H. Cardiac metabolism–emergence, decline, and resurgence. Part II. Cardiovasc. Res., 1992, vol. 26, no. 9, pp. 817-830.
29. Perepech N.B., Nedoshivin A.O., Nesterova I.V. Neoton and thrombolytic therapy of myocardial infarction. Ter. Arkh., 2001, vol. 73, no. 9, pp. 50–55.
30. Pitt B., Zannad F., Remme W.J. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N. Engl. J. Med., 1999, vol. 341, no. 10, pp. 709-717.
31. Prabhakar G., Vona-Davis L., Murray D. et al. Phosphocreatine restores high-energy phosphates in ischemic myocardium: implication for off-pump cardiac revascularization. J. Am. Coll. Surg., 2003, vol. 197, no. 5, pp. 786-791.
32. Robinson L.A., Braimbridge M.V., Hearse D.J. Creatine phosphate: an additive myocardial protective and antiarrhythmic agent in cardioplegia. J. Thorac. Cardiovasc. Surg., 1984, vol. 87, no. 2, pp. 190-200.
33. Ruda M.Y., Samarenko M.B., Afonskaya N.I. et al. Reduction of ventricular arrhythmias by phosphocreatine (Neoton) in patients with acute myocardial infarction. Am. Heart J., 1988, vol. 116, no. 2, Pt. 1, pp. 393-397.
34. Schaper J., Meiser E., Stämmler G. Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ. Res., 1985, vol. 56, no. 3, pp. 377-391.
35. Semenovsky M.L., Shumakov V.I., Sharov V.G. et al. Protection of ischemic myocardium by exogenous phosphocreatine. II. Clinical, ultrastructural, and biochemical evaluations. J. Thorac. Cardiovasc. Surg., 1987, vol. 94, no. 5, pp. 762-769.
36. Sharov V.G., Afonskaya N.I., Ruda M.Y. et al. Protection of ischemic myocardium by exogenous phosphocreatine (neoton): pharmacokinetics of phosphocreatine, reduction of infarct size, stabilization of sarcolemma of ischemic cardiomyocytes, and antithrombotic action. Biochem. Med. Metab. Biol., 1986, vol. 35, no. 1, pp. 101-114.
37. Shen W., Spindler M., Higgins M.A. et al. The fall in creatine levels and creatine kinase isozyme changes in the failing heart are reversible: complex post-transcriptional regulation of the components of the CK system. J. Mol. Cell. Cardiol., 2005, vol. 39, no. 3, pp. 537-544.
38. Smilari L., La Mela C., Santagati A. Study of Left Ventricular Function in Ischemic Cardiomyopathies before and after Phosphocreatine Infusion. Echocardiographic Study. Current Therapeutic Research. –1987. – Vol. 41. – P. 557–567.
39. Spindler M., Meyer K., Stromer H. et al. Creatine kinase deficient hearts exhibit increased susceptibility to ischemia-reperfusion injury and impaired calcium homeostasis. Am. J. Physiol. Heart Circ. Physiol., 2004, vol. 287, no. 3, pp. H1039–H1045.
40. Strumia E., Pelliccia F., D’Ambrosio G. Creatine phosphate: pharmacological and clinical perspectives. Adv. Ther., 2012, vol. 29, no. 2, pp. 99-123.
41. Tang L.H., Xia Z.Y., Zhao B. et al. Phosphocreatine preconditioning attenuates apoptosis in ischemia-reperfusion injury of rat brain. J. Biomed. Biotechnol., 2011, no. 2011, pp. 107091.
42. Tani M., Neely J.R. Mechanisms of reperfusion injury by low Ca2+ and/or high K+. Am. J. Physiol., 1990, vol. 258, no. 4, Pt 2, pp. H1025–H1031.
43. Tani M., Neely J.R. Role of intracellular Na+ in Ca++ overload and depressed revovery of ventricular function of pererfused ischemic rat hearts: possible of H+/Na+ exchange. Circ. Res., 1989, vol. 4, no. 65, pp. 1045-1056.
44. ten Hove M., Lygate C.A., Fischer A. et al. Reduced inotropic reserve and Increased susceptibility to cardiac ischemia/reperfusion injury in phosphocreatine-deficient guanidinoacetate-N-methyltransferase-knockout mice. Circulation, 2005, vol. 111, no. 19, pp. 2477-2485.
45. Thorelius J., Thelin S., Ronquist G. et al. Biochemical and functional effects of creatine phosphate in cardioplegic solution during aortic valve surgery – a clinical study. Thorac. Cardiovasc. Surg., 1992, vol. 40, no. 1, pp. 10-13.
46. Tokarska-Schlattner M., Epand R.F., Meiler F. et al. Phosphocreatine interacts with phospholipids, affects membrane properties and exerts membrane-protective effects. PLoS One, 2012, vol. 7, no. 8, pp. e43178.
47. VanBenthuysen K.M., McMurtry I.F., Horwitz L.D. Reperfusion after acute coronary occlusion in dogs impairs endothelium-dependent relaxation to acetylcholine and augments contractile reactivity in vitro. J. Clin. Invest., 1987, vol. 79, no. 1, pp. 265-274.
48. Vinten-Johansen J., Johnston W.E., Mills S.A. Reperfusion injury after temporary coronary occlusion. J. Thorac. Cardiovasc. Surg., 1988, vol. 95, no. 6, pp. 960-968.
49. Woo Y.J., Grand T.J., Zentko S. et al. Creatine phosphate administration preserves myocardial function in a model of off-pump coronary revascularization. J. Cardiovasc. Surg., 2005, vol. 46, no. 3, pp. 297-305.
50. Wyss M., Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol. Rev. – 2000. – Vol. 80, № 3. – P. 1107–1213.
Review
For citations:
Lomivorotov V.V., Abubakirov M.N., Fominskiy E.V., Shmyrev V.A. CARDIOPROTECTIVE EFFECTS OF PHOSPHOCREATINE. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2016;13(5):74-80. (In Russ.) https://doi.org/10.21292/2078-5658-2016-13-5-74-80