Preview

Messenger of ANESTHESIOLOGY AND RESUSCITATION

Advanced search

Passive leg raising test – optimal methodology. A systematic review and meta-analysis (literature review)

https://doi.org/10.24884/2078-5658-2025-22-1-129-150

Abstract

Introduction. The passive leg raising (PLR test) test is a widely used diagnostic test for assessing fluid responsiveness. However, there is no generally accepted methodology describing the details of its implementation.

The objective was to establish criteria for conducting the PLR test based on the diagnostic accuracy of various variations.

Materials and methods. A systematic review and meta-analysis included prospective cohort studies that evaluated the diagnostic accuracy of different PLR test variations. The primary endpoint was the area under the ROC curve (AUROC). The search was conducted up to March 2024 and included «snowball» method. The covariate influence was assessed via univariate meta-regression. The risk of bias was evaluated using QUADAS-2, and evidence certainty was assessed with GRADE.

Results. The meta-analysis included 33 prospective cohort studies, 1,607 critically ill patients The AUROC for the PLR test was 0.882 [0.849; 0.916] (moderate certainty of evidence). Transthoracic and transesophageal echocardiography, transpulmonary thermodilution, and pulse contour analysis showed comparable results for assessing cardiac hemodynamics during PLR test, p = 0.253 (moderate certainty of evidence). Evaluating hemodynamic changes within the first two minutes of the PLR test increased diagnostic accuracy (high certainty of evidence). The starting body position (low Fowler’s position or supine) during the PLR test did not impact diagnostic accuracy (low certainty of evidence). Baseline covariates (age and gender) had no effect on diagnostic accuracy of the PLR test in critically ill patients (high certainty of evidence).

Conclusion. For assessing fluid responsiveness in critically ill patients, the PLR test should include intracardiac hemodynamic assessment within two minutes using any common method. Low Fowler’s position is preferable starting position of the body for PLR test.

About the Authors

L. B. Berikashvili
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Berikashvili Levan B., Cand. of Sci. (Med.), Senior Research Fellow of the Laboratory of Clinical Trials and Intelligent Information Technologies

25, Petrovka str., Moscow, 107031



I. V. Kuznetsov
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Kuznetsov Ivan V., Junior Research Fellow of the Laboratory of Clinical Trials and Intelligent Information Technologies

25, Petrovka str., Moscow, 107031



P. A. Polyakov
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Polyakov Petr A., Research Fellow of the Laboratory of Clinical Trials and Intelligent Information Technologies

25, Petrovka str., Moscow, 107031



M. Ya. Yadgarov
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Yadgarov Mikhail Ya., Cand. of Sci. (Med.), Senior Research Fellow of the Laboratory of Clinical Trials and Intelligent Information Technologies

25, Petrovka str., Moscow, 107031



P. V. Ryzhkov
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Ryzhkov Pavel V., Junior Research Fellow of the Laboratory of Clinical Trials and Intelligent Information Technologies

25, Petrovka str., Moscow, 107031



A. A. Yakovlev
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Yakovlev Alexey A., Cand. of Sci. (Med.), First Deputy Director, Head of the Research Institute of Rehabilitation named after I. V. Prianikov

25, Petrovka str., Moscow, 107031



E. M. Korolenok
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Korolenok Elizaveta M., Junior Research Fellow of the Laboratory of Clinical Trials and Intelligent Information Technologies

25, Petrovka str., Moscow, 107031



V. V. Likhvantsev
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Likhvantsev Valery V., Dr. of Sci. (Med.), Professor, Deputy Director of the V. A. Negovsky Scientific Research Institute of General Reanimatology, Professor of the Department of Anesthesiology and Intensive Care Medicine at Sechenov University

25, Petrovka str., Moscow, 107031



References

1. Dats A. V., Gorbachev V. I. The fluid overload: causes, diagnosis, complications, treatment. Messenger of anesthesiology and resuscitation, 2015, vol. 12, no. 3, pp. 65–73. (In Russ.). https://doi.org/10.21292/2078-5658-2015-12-3-65-73.

2. Paromov K. V., Volkov D. A., Kirov M. Y. Responsiveness to infusion load under regional anesthesia after off-pump coronary artery bypass graft surgery. General Reanimatology, 2023, vol. 19, no. 5, pp. 31–38. (In Russ.). https://doi.org/10.15360/1813-9779-2023-5-2352.

3. Airapetian N., Maizel J., Alyamani O. et al. Does inferior vena cava respiratory variability predict fluid responsiveness in spontaneously breathing patients? Crit Care, 2015, vol. 19, no. 1. https://doi.org/10.1186/s13054-015-1100-9.

4. Alvarado Sánchez J. I., Caicedo Ruiz J. D., Diaztagle Fernández J. J. et al. Variables influencing the prediction of fluid responsiveness: a systematic review and meta-analysis. Crit Care, 2023, vol. 27, no. 1, pp. 361. https://doi.org/10.1186/s13054-023-04629-w.

5. Aneman A., Sondergaard S. Understanding the passive leg raising test. Intensive Care Med, 2016, vol. 42, no. 9, pp. 1493–1495. https://doi.org/10.1007/s00134-016-4228-4.

6. Backer D. De Stroke volume variations. Minerva Anestesiol, 2003, vol. 69, no. 4, pp. 285–288. https://doi.org/10.1097/ccm.0b013e318236e017.

7. Bassi G. L., Xiol E. A., Pagliara F. et al. Body Position and Ventilator-Associated Pneumonia Prevention. Semin Respir Crit Care Med, 2017, vol. 38, no. 3, pp. 371–380. https://doi.org/10.1055/s-0037-1603111.

8. Bataille B., Selle J. de, Moussot P. E. et al. Machine learning methods to improve bedside fluid responsiveness prediction in severe sepsis or septic shock: an observational study. Br J Anaesth, 2021, vol. 126, no. 4, pp. 826–834. https://doi.org/10.1016/j.bja.2020.11.039.

9. Berlin D. A., Bakker J. Understanding venous return. Intensive Care Med, 2014, vol. 40, no. 10, pp. 1564–1566. https://doi.org/10.1007/s00134-014-3379-4.

10. Beurton A., Teboul J. L., Girotto V. et al. Intra-Abdominal Hypertension Is Responsible for False Negatives to the Passive Leg Raising Test. Crit Care Med, 2019, vol. 47, no. 8, pp. E639–E647. https://doi.org/10.1097/CCM.0000000000003808.

11. Biais M., Vidil L., Sarrabay P. et al. Changes in stroke volume induced by passive leg raising in spontaneously breathing patients: comparison between echocardiography and Vigileo/FloTrac device. Crit Care, 2009, vol. 13, no. 6, pp. R195. https://doi.org/10.1186/cc8195.

12. Cavallaro F., Sandroni C., Marano C. et al. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: Systematic review and meta-analysis of clinical studies. Intensive Care Med, 2010, vol. 36, no. 9, pp. 1475–1483. https://doi.org/10.1007/s00134-010-1929-y.

13. Cherpanath T. G. V., Hirsch A., Geerts B. F. et al. Predicting fluid responsiveness by passive leg raising: A systematic review and meta-analysis of 23 clinical trials. Crit Care Med, 2016, vol. 44, no. 5, pp. 981–991. https://doi.org/10.1097/CCM.0000000000001556.

14. Claure-Del Granado R., Mehta R. L. Fluid overload in the ICU: Evaluation and management. BMC Nephrol, 2016, vol. 17, no. 1, pp. 109. https://doi.org/10.1186/s12882-016-0323-6.

15. Corl K. A., George N. R., Romanoff J. et al. Inferior vena cava collapsibility detects fluid responsiveness among spontaneously breathing critically-ill patients. J Crit Care, 2017, vol. 41, pp. 130–137. https://doi.org/10.1016/j.jcrc.2017.05.008.

16. Delicce A. V., Makaryus A. N. Physiology, Frank Starling Law. Treasure Island (FL): – 2018.

17. Egger M., Smith G. D., Schneider M. et al. Bias in meta-analysis detected by a simple, graphical test. Br Med J, 1997, vol. 315, no. 7109, pp. 629–634. https://doi.org/10.1136/bmj.315.7109.629.

18. Elsayed A. I., Selim K. A. W., Zaghla H. E. et al. Comparison of changes in PPV using a tidal volume challenge with a passive leg raising test to predict fluid responsiveness in patients ventilated using low tidal volume. Indian J Crit Care Med, 2021, vol. 25, no. 6, pp. 685–689. https://doi.org/10.5005/jp-journals-10071-23875.

19. Elwan M., Roshdy A., Elsharkawy E. et al. Can passive leg raise predict the response to fluid resuscitation in ED? BMC Emerg Med, 2022, vol. 22, no. 1, pp. 172. https://doi.org/10.1186/s12873-022-00721-6.

20. Fellahi J.-L., Fischer M.-O., Dalbera A. et al. Can endotracheal bioimpedance cardiography assess hemodynamic response to passive leg raising following cardiac surgery? Ann Intensive Care, 2012, vol. 2, no. 1, pp. 26. https://doi.org/10.1186/2110-5820-2-26.

21. Fischer M. O., Rebet O., Guinot P. G. et al. Assessment of changes in cardiac index with calibrated pulse contour analysis in cardiac surgery: A prospective observational study. Anaesth Crit Care Pain Med, 2016, vol. 35, no. 4, pp. 261–267. https://doi.org/10.1016/j.accpm.2015.12.010.

22. El Hadouti Y., Valencia L., Becerra A. et al. Echocardiography and passive leg raising in the postoperative period: A prospective observational study. Eur J Anaesthesiol, 2017, vol. 34, no. 11, pp. 748–754. https://doi.org/10.1097/EJA.0000000000000679.

23. Halvorsen S., Mehilli J., Cassese S. et al. 2022 ESC Guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery. Eur Heart J, 2022, vol. 43, no. 39, pp. 3826–3924. https://doi.org/10.1093/eurheartj/ehac270.

24. Hasanin A. Fluid responsiveness in acute circulatory failure. J Intensive Care, 2015, vol. 3, no. 1, pp. 50. https://doi.org/10.1186/s40560-015-0117-0.

25. Higgins J. P. T., Thomas J., Chandler J. et al. Cochrane handbook for systematic reviews of interventions. Cochrane Handb Syst Rev Interv, 2019, pp. 1–694. https://doi.org/10.1002/9781119536604.

26. Hofer C. K., Geisen M., Hartnack S. et al. Reliability of Passive Leg Raising, Stroke Volume Variation and Pulse Pressure Variation to Predict Fluid Responsiveness During Weaning From Mechanical Ventilation After Cardiac Surgery: A Prospective, Observational Study. Turkish J Anaesthesiol Reanim, 2018, vol. 46, no. 2, pp. 108–115. https://doi.org/10.5152/TJAR.2018.29577.

27. Hoorn E. J. Intravenous fluids: balancing solutions. J Nephrol, 2017, vol. 30, no. 4, pp. 485–492. https://doi.org/10.1007/s40620-016-0363-9.

28. Ibarra-Estrada M. A., Lopez-Pulgarin J. A., Mijangos-Mendez J. C. et al. Respiratory variation in carotid peak systolic velocity predicts volume responsiveness in mechanically ventilated patients with septic shock: a prospective cohort study. Crit Ultrasound J, 2015, vol. 7, no. 1, pp. 29. https://doi.org/10.1186/s13089-015-0029-1.

29. Ilyinа Y. Y., Kuzkov V. V., Fot E. V. et al. Predicting Response To Fluid Administration: Current Approaches and Trends. Messenger Anesthesiol Resusc, 2017, vol. 14, no. 3, pp. 25–34. https://doi.org/10.21292/2078-5658-2017-14-3-25-34.

30. Jabot J., Teboul J. L., Richard C. et al. Passive leg raising for predicting fluid responsiveness: Importance of the postural change. Intensive Care Med, 2009, vol. 35, no. 1, pp. 85–90. https://doi.org/10.1007/s00134-008-1293-3.

31. Jones R. M., Hill A. B., Nahrwold M. L. et al. The effect of method of radial artery cannulation on postcannulation blood flow and thrombus formation. Anesthesiology, 1981, vol. 55, no. 1, pp. 76–78. https://doi.org/10.1097/00000542-198107000-00016.

32. Kim N., Shim J.-K., Choi H. G. et al. Comparison of positive end-expiratory pressure-induced increase in central venous pressure and passive leg raising to predict fluid responsiveness in patients with atrial fibrillation. Br J Anaesth, 2016, vol. 116, no. 3, pp. 350–356. https://doi.org/10.1093/bja/aev359.

33. Klompas M., Branson R., Eichenwald E. C. et al. Strategies to Prevent Ventilator-Associated Pneumonia in Acute Care Hospitals: 2014 Update. Infect Control Hosp Epidemiol, 2014, vol. 35, no. 8, pp. 915–936. https://doi.org/10.1086/677144.

34. Krige A., Bland M., Fanshawe T. Fluid responsiveness prediction using Vigileo FloTrac measured cardiac output changes during passive leg raise test. J Intensive Care, 2016, vol. 4, no. 1, pp. 63. https://doi.org/10.1186/s40560-016-0188-6.

35. Kupersztych-Hagege E., Teboul J. L., Artigas A. et al. Bioreactance is not reliable for estimating cardiac output and the effects of passive leg raising in critically ill patients. Br J Anaesth, 2013, vol. 111, no. 6, pp. 961–966. https://doi.org/10.1093/bja/aet282.

36. Lafanechère A., Pène F., Goulenok C. et al. Changes in aortic blood flow induced by passive leg raising predict fluid responsiveness in critically ill patients. Crit Care, 2006, vol. 10, no. 5, pp. R132. https://doi.org/10.1186/cc5044.

37. Lakhal K., Ehrmann S., Runge I. et al. Central venous pressure measurements improve the accuracy of leg raising-induced change in pulse pressure to predict fluid responsiveness. Intensive Care Med, 2010, vol. 36, no. 6, pp. 940–948. https://doi.org/10.1007/s00134-010-1755-2.

38. Lamia B., Ochagavia A., Monnet X. et al. Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Med, 2007, vol. 33, no. 7, pp. 1125–1132. https://doi.org/10.1007/s00134-007-0646-7.

39. Liberati A., Altman D. G., Tetzlaff J. et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health careinterventions: Explanation and elaboration. PLoS Med, 2009, vol. 6, no. 7, pp. e1000100. https://doi.org/10.1371/journal.pmed.1000100.

40. Long E., Oakley E., Duke T. et al. Does Respiratory Variation in Inferior Vena Cava Diameter Predict Fluid Responsiveness: A Systematic Review and Meta-Analysis. Shock, 2017, vol. 47, no. 5, pp. 550–559. https://doi.org/10.1097/SHK.0000000000000801.

41. Ma G. G., Hao G. W., Yang X. M. et al. Internal jugular vein variability predicts fluid responsiveness in cardiac surgical patients with mechanical ventilation. Ann Intensive Care, 2018, vol. 8, no. 1. https://doi.org/10.1186/s13613-017-0347-5.

42. Ma G. G., Tu G. W., Zheng J. L. et al. Changes in Stroke Volume Variation Induced by Passive Leg Raising to Predict Fluid Responsiveness in Cardiac Surgical Patients With Protective Ventilation. J Cardiothorac Vasc Anesth, 2020, vol. 34, no. 6, pp. 1526–1533. https://doi.org/10.1053/j.jvca.2019.10.002.

43. Maizel J., Airapetian N., Lorne E. et al. Diagnosis of central hypovolemia by using passive leg raising. Intensive Care Med, 2007, vol. 33, no. 7, pp. 1133–1138. https://doi.org/10.1007/s00134-007-0642-y.

44. Marik P. E., Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med, 2013, vol. 41, no. 7, pp. 1774–1781. https://doi.org/10.1097/CCM.0b013e31828a25fd.

45. Marik P. E., Levitov A., Young A. et al. The use of bioreactance and carotid doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in hemodynamically unstable patients. Chest, 2013, vol. 143, no. 2, pp. 364–370. https://doi.org/10.1378/chest.12-1274.

46. Martin U. J., Diaz-Abad M., Krachman S. L. Hemodynamic monitoring. Crit Care Study Guid Text Rev Second Ed, 2010, pp. 51–78. https://doi.org/10.1007/978-0-387-77452-7_4.

47. McGuinness L. A., Higgins J. P. T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods, 2021, vol. 12, no. 1, pp. 55–61. https://doi.org/10.1002/jrsm.1411.

48. Messmer A. S., Zingg C., Müller M. et al. Fluid overload and mortality in adult critical care patients-a systematic review and meta-analysis of observational studies. Crit Care Med, 2020, vol. 48, no. 12, pp. 1862–1870. https://doi.org/10.1097/CCM.0000000000004617.

49. Monge García M. I., Cano A. G., Romero M. G. et al. Non-invasive assessment of fluid responsiveness by changes in partial end-tidal CO2 pressure during a passive leg-raising maneuver. Ann Intensive Care, 2012, vol. 2, no. 1, pp. 2–9. https://doi.org/10.1186/2110-5820-2-9.

50. Monnet X., Bataille A., Magalhaes E. et al. End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test. Intensive Care Med, 2013, vol. 39, no. 1, pp. 93–100. https://doi.org/10.1007/s00134-012-2693-y.

51. Monnet X., Bleibtreu A., Ferré A. et al. Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in Patients with low respiratory system compliance. Crit Care Med, 2012, vol. 40, no. 1, pp. 152–157. https://doi.org/10.1097/CCM.0b013e31822f08d7.

52. Monnet X., Dres M., Ferré A. et al. Prediction of fluid responsiveness by a continuous non-invasive assessment of arterial pressure in critically ill patients: Comparison with four other dynamic indices. Br J Anaesth, 2012, vol. 109, no. 3, pp. 330–338. https://doi.org/10.1093/bja/aes182.

53. Monnet X., Marik P., Teboul J. L. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med, 2016, vol. 42, no. 12, pp. 1935–1947. https://doi.org/10.1007/s00134-015-4134-1.

54. Monnet X., Osman D., Ridel C. et al. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med, 2009, vol. 37, no. 3, pp. 951–956. https://doi.org/10.1097/CCM.0b013e3181968fe1.

55. Monnet X., Rienzo M., Osman D. et al. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med, 2006, vol. 34, no. 5, pp. 1402–1407. https://doi.org/10.1097/01.CCM.0000215453.11735.06.

56. Monnet X., Shi R., Teboul J. L. Prediction of fluid responsiveness. What’s new? Ann Intensive Care, 2022, vol. 12, no. 1, pp. 46. https://doi.org/10.1186/s13613-022-01022-8.

57. Monnet X., Teboul J.-L. Prediction of fluid responsiveness in spontaneously breathing patients. Ann Transl Med, 2020, vol. 8, no. 12, pp. 790–790. https://doi.org/10.21037/atm-2020-hdm-18.

58. Monnet X., Teboul J. L. Passive leg raising. Intensive Care Med, 2008, vol. 34, no. 4, pp. 659–663. https://doi.org/10.1007/s00134-008-0994-y.

59. Monnet X., Teboul J. L. Transpulmonary thermodilution: Advantages and limits. Crit Care, 2017, vol. 21, no. 1, pp. 147. https://doi.org/10.1186/s13054-017-1739-5.

60. O’Connor M. E., Prowle J. R. Fluid Overload. Crit Care Clin, 2015, vol. 31, no. 4, pp. 803–821. https://doi.org/10.1016/j.ccc.2015.06.013.

61. Orso D., Paoli I., Piani T. et al. Accuracy of ultrasonographic measurements of inferior vena cava to determine fluid responsiveness: a systematic review and meta-analysis. J Intensive Care Med, 2020, vol. 35, no. 4, pp. 354–363. https://doi.org/10.1177/0885066617752308.

62. Pakkam M. L., Brown K. N. Physiology, Bainbridge Reflex. Treasure Island (FL): 2019.

63. Persichini R., Lai C., Teboul J. L. et al. Venous return and mean systemic filling pressure: physiology and clinical applications. Crit Care, 2022, vol. 26, no. 1, pp. 150. https://doi.org/10.1186/s13054-022-04024-x.

64. Pickett J. D., Bridges E., Kritek P. A. et al. Noninvasive blood pressure monitoring and prediction of fluid responsiveness to passive leg raising. Am J Crit Care, 2018, vol. 27, no. 3, pp. 228–237. https://doi.org/10.4037/ajcc2018867.

65. Pozuelo-Carrascosa D. P., Cobo-Cuenca A. I., Carmona-Torres J. M. et al. Body position for preventing ventilator-associated pneumonia for critically ill patients: a systematic review and network meta-analysis. J Intensive Care, 2022, vol. 10, no. 1, pp. 9. https://doi.org/10.1186/s40560-022-00600-z.

66. Préau S., Saulnier F., Dewavrin F. et al. Passive leg raising is predictive of fluid responsiveness in spontaneously breathing patients with severe sepsis or acute pancreatitis. Crit Care Med, 2010, vol. 38, no. 3, pp. 819–825. https://doi.org/10.1097/CCM.0b013e3181c8fe7a.

67. Scheeren T. W. L., Ramsay M. A. E. New Developments in Hemodynamic Monitoring. J Cardiothorac Vasc Anesth, 2019, vol. 33, pp. S67–S72. https://doi.org/10.1053/j.jvca.2019.03.043.

68. Si X., Cao D. Y., Chen J. et al. Effect of systolic cardiac function on passive leg raising for predicting fluid responsiveness: a prospective observational study. Chin Med J (Engl), 2018, vol. 131, no. 3, pp. 253–261. https://doi.org/10.4103/0366-6999.223841.

69. Stauss H. M. Baroreceptor reflex function. Am J Physiol – Regul Integr Comp Physiol, 2002, vol. 283, no. 2, pp. R284–6. https://doi.org/10.1152/ajpregu.00219.2002.

70. Taccheri T., Gavelli F., Teboul J.-L. L. et al. Do changes in pulse pressure variation and inferior vena cava distensibility during passive leg raising and tidal volume challenge detect preload responsiveness in case of low tidal volume ventilation? Crit Care, 2021, vol. 25, no. 1, pp. 110. https://doi.org/10.1186/s13054-021-03515-7.

71. Thiel S. W., Kollef M. H., Isakow W. Non-invasive stroke volume measurement and passive leg raising predict volume responsiveness in medical ICU patients: an observational cohort study. Crit Care, 2009, vol. 13, no. 4, pp. R111. https://doi.org/10.1186/cc7955.

72. Trifi A., Abdellatif S., Daly F. et al. Ultrasound stroke volume variation induced by passive leg raising and fluid responsiveness: An observational cohort study. Med Intensiva, 2019, vol. 43, no. 1, pp. 10–17. https://doi.org/10.1016/j.medin.2017.11.002.

73. Vincent J. L. Fluid management in the critically ill. Kidney Int, 2019, vol. 96, no. 1, pp. 52–57. https://doi.org/10.1016/j.kint.2018.11.047.

74. Vincent J. L., Weil M. H. Fluid challenge revisited. Crit Care Med, 2006, vol. 34, no. 5, pp. 1333–1337. https://doi.org/10.1097/01.CCM.0000214677.76535.A5.

75. Voelkel N. F., Quaife R. A., Leinwand L. A. et al. Right ventricular function and failure: Report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation, 2006, vol. 114, no. 17, pp. 1883–1891.

76. Wang W., Zhu G. Q., Gao L. et al. Baroreceptor reflex in heart failure. Sheng Li Xue Bao, 2004, vol. 56, no. 3, pp. 269–281.

77. Weinstein P. D., Doerfler M. E. Systemic complications of fluid resuscitation. Crit Care Clin, 1992, vol. 8, no. 2, pp. 439–448. https://doi.org/10.1016/s0749-0704(18)30259-8.

78. Whiting P. F., Rutjes A. W. S., Westwood M. E. et al. Quadas-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med, 2011, vol. 155, no. 8, pp. 529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009.

79. Xu J., Peng X., Pan C. et al. Fluid responsiveness predicted by transcutaneous partial pressure of oxygen in patients with circulatory failure: a prospective study. Ann Intensive Care, 2017, vol. 7, no. 1, pp. 56. https://doi.org/10.1186/s13613-017-0279-0.

80. Yang X., Du B. Does pulse pressure variation predict fluid responsiveness in critically ill patients: A systematic review and meta-analysis. Crit Care, 2014, vol. 18, no. 6. https://doi.org/10.1186/s13054-014-0650-6.

81. Yasumasu T., Abe H., Oginosawa Y. et al. Assessment of cardiac baroreflex function during fixed atrioventricular pacing using baroreceptor-stroke volume reflex sensitivity. J Cardiovasc Electrophysiol, 2005, vol. 16, no. 7, pp. 727–731. https://doi.org/10.1111/j.1540-8167.2005.40767.x.

82. Zhu G., Zhang K., Fu Y. et al. Accuracy assessment of noninvasive cardiac output monitoring in the hemodynamic monitoring in critically ill patients. Ann Cardiothorac Surg, 2020, vol. 9, no. 5, pp. 3506–3512. https://doi.org/10.21037/apm-20-1731.

83. Litmaps | Your Literature Review Assistant. [Electronic source]. URL: https://www.litmaps.com/ (accessed: 09.08.2024).

84. GRADE Handbook | Cochrane Training. [Electronic source]. URL: https://training.cochrane.org/resource/grade-handbook (accessed: 16.10.2024).


Review

For citations:


Berikashvili L.B., Kuznetsov I.V., Polyakov P.A., Yadgarov M.Ya., Ryzhkov P.V., Yakovlev A.A., Korolenok E.M., Likhvantsev V.V. Passive leg raising test – optimal methodology. A systematic review and meta-analysis (literature review). Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2025;22(1):129-150. (In Russ.) https://doi.org/10.24884/2078-5658-2025-22-1-129-150



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)