Preview

Вестник анестезиологии и реаниматологии

Расширенный поиск

Предикторы и этиология инфекций, связанных с оказанием медицинской помощи у пациентов с тяжелой внебольничной пневмонией

https://doi.org/10.24884/2078-5658-2025-22-1-40-56

Аннотация

Введение. Рост распространенности инфекций, связанных с оказанием медицинской помощи (ИСМП), вызванных приоритетными патогенами критического, высокого и среднего уровня, среди пациентов с тяжелой внебольничной пневмонией (ТВП) и высокий уровень летальности обуславливают необходимость мониторинга возбудителей и оценку предикторов.

Цель. Выявить предикторы, определить этиологию и оценить изменения в спектре возбудителей ИСМП в течение 10-летнего периода у пациентов с ТВП.

Материалы и методы. Проведен ретроспективный анализ данных историй болезни 756 пациентов, пролеченных в отделении реанимации и интенсивной терапии ФГБОУ ВО СЗГМУ им. И. И. Мечникова в период с 2013 по 2023 гг. Инциденты ИСМП (катетер-ассоциированная инфекция мочевыводящих путей – КАИМВП, катетер-ассоциированная инфекция кровотока – КАИК и вентилятор-ассоциированная пневмонии – ВАП) были определены в соответствии с критериями НАСКИ от 2023 г.

Результаты. В исследование были включены 663 пациента с ТВП. Плотность инцидентности ИСМП у пациентов с ТВП составила 6,2/1000 дней эксплуатации устройств (ДЭУ) и демонстрирует подъем в период 2021–2023 гг. Частота КАИК, вызванная патогенами с множественной лекарственной устойчивостью (МЛУ), составила 69,2%, КАИМВП – 24,4 %, ВАП – 42,9 %. Было зарегистрировано 72 случая ИСМП у 67 пациентов, из них у 24 (35,8%) пациентов с ТВП получено 50 патогенов критического и высокого приоритета, в том числе у 16 (23,8%) выделены бактериально-грибковые ассоциации. Приоритетными патогенами при регистрации ИСМП за весь анализируемый период являлись карбапенем-резистентные штаммы A. baumannii и K. pneumoniae, а также резистентные к цефалоспоринам III поколения изоляты K. pneumoniae. Выявлена тенденция к расширению спектра возбудителей и увеличению доли Candida non-albicans видов в этиологической структуре грибковых ИСМП в период 2021–2023 гг. Определены независимые предикторы ИСМП у пациентов с ТВП, которыми являлись для КАИК – > 7 ДЭУ, а для ВАП – ИВЛ > 72 часов и повышение прокальцитонина > 0,5 нг/мл для ВАП и КАИМВП. При регистрации КАИМВП тяжесть сопутствующей патологии (балл ≥ 5 по CCI: 3,829; 1,867–7,852, p < 0,001) у пациентов с ТВП и тяжесть органной дисфункции (балл по SOFA > 4,0 (9,976; 1,277–77,958, p = 0,028) у пациентов с ТВП COVID-19 явились независимыми предикторами ИСМП.

Заключение. В период 2021–2023 гг. в группе пациентов с ТВП отмечен рост ИСМП, основными возбудителями которых явились преимущественно приоритетные патогены критического, высокого и среднего уровня K. pneumoniae, A.baumannii, а также грибы рода Candida (C. tropicalis, С. parapsilosis, P. kudriavzevii). Определены независимые предикторы ИСМП у пациентов с ТВП, которыми являлись длительность эксплуатации устройств и повышение уровня прокальцитонина свыше 0,5 нг/мл. При регистрации КАИМВП выявлены такие факторы риска, как тяжесть коморбидной патологии для всех пациентов с ТВП и выраженность органной дисфункции у пациентов с ТВП COVID-19.

Об авторах

И. А. Руслякова
Северо-Западный государственный медицинский университет им. И. И. Мечникова
Россия

Руслякова Ирина Анатольевна, канд. мед. наук, ассистент кафедры анестезиологии и реаниматологии им. В. Л. Ваневского, зав. отделением реанимации и интенсивной терапии для пациентов терапевтического профиля

195067, Санкт-Петербург, Пискаревский пр., д. 47



Э. З. Шамсутдинова
Северо-Западный государственный медицинский университет им. И. И. Мечникова
Россия

Шамсутдинова Эльвина Зинуровна, врач-анестезиолог-реаниматолог отделения реанимации и интенсивной терапии для пациентов терапевтического профиля

195067, Санкт-Петербург, Пискаревский пр., д. 47



О. В. Дмитриева
Северо-Западный государственный медицинский университет им. И. И. Мечникова
Россия

Дмитриева Ольга Валерьевна, канд. мед. наук, зав. эпидемиологическим отделом, врач-эпидемиолог

195067, Санкт-Петербург, Пискаревский пр., д. 47



К. И. Широков
Северо-Западный государственный медицинский университет им. И. И. Мечникова
Россия

Широков Кирилл Игоревич, студент 4-го курса 

195067, Санкт-Петербург, Пискаревский пр., д. 47



Ю. В. Борзова
Северо-Западный государственный медицинский университет им. И. И. Мечникова
Россия

Борзова Юлия Владимировна, канд. мед. наук, зав. микологической клиникой 

195067, Санкт-Петербург, Пискаревский пр., д. 47



Е. А. Оришак
Северо-Западный государственный медицинский университет им. И. И. Мечникова
Россия

Оришак Елена Александровна, канд. мед. наук, доцент кафедры медицинской микробиологии, зав. бактериологической лабораторией

195067, Санкт-Петербург, Пискаревский пр., д. 47



Н. В. Васильева
Северо-Западный государственный медицинский университет им. И. И. Мечникова
Россия

Васильева Наталья Всеволодовна, д-р мед. наук, профессор, директор Научно-исследовательского института медицинской микологии им. П. Н. Кашкина

195067, Санкт-Петербург, Пискаревский пр., д. 47



Список литературы

1. Белобородов В. Б., Голощапов О. В., Гусаров В. Г. и др. Методические рекомендации Российской некоммерческой общественной организации «Ассоциация анестезиологов-реаниматологов», Межрегиональной общественной организации «Альянс клинических химиотерапевтов и микробиологов», Межрегиональной ассоциации по клинической микробиологии и антимикробной химиотерапии (МАКМАХ), общественной организации «Российский Сепсис Форум» «Диагностика и антимикробная терапия инфекций, вызванных полирезистентными штаммами микроорганизмов» (обновление 2022 г.) // Вестник анестезиологии и реаниматологии – 2022. – Т. 19, № 2. – С. 84–114. https://doi.org/10.21292/2078-5658-2022-19-2-84-114.

2. Дехнич А. В., Кузьменков А. Ю., Попов Д. А. и др. Алгоритм выбора препаратов для таргетной антимикробной терапии на основе результатов молекулярно-биологических исследований положительных культур крови // Вестник анестезиологии и реаниматологии – 2023. – Т. 20, № 2. – С. 96–107. https://doi.org/10.24884/2078-5658-2022-20-2-96-107.

3. Зуева Л. П., Асланов Б. И., Васильев К. Д. и др. Эпидемиологическая диагностика – основа риск-ориентированных технологий профилактики госпитальных инфекций // Эпидемиология и вакцинопрофилактика. – 2017. – Т. 16, № 5. – С. 69–74. https://doi.org/10.31631/2073-3046-2017-16-5-69-74.

4. Ильина Т. С., Романова Ю. М. Бактериальные биопленки: роль в хронических инфекционных процессах и поиск средств борьбы с ними // Молекулярная генетика, микробиология и вирусология. – 2021. – Т. 39, № 2. – С. 14–24. https://doi.org/10.17116/molgen20213902114.

5. Методическое руководство «Эпидемиологическая диагностика инфекционных болезней, связанных с оказанием медицинской помощи, на основе стандартных определений случая». URL: https://www.nasci.ru/?id=121561&download=1 (дата обращения: 26.05.2024).

6. Полушин Ю. С., Шлык И. В. Можно ли повысить эффективность антибактериальной терапии нозокомиальных инфекций? // Вестник анестезиологии и реаниматологии. – 2020. – Т. 17, № 1. – С. 6–8. https://doi.org/10.21292/2078-5658-2020-17-1-6-8.

7. Постановление Главного государственного санитарного врача РФ от 28 января 2021 г. N 4 «Об утверждении санитарных правил и норм СанПиН 3.3686-21 «Санитарно-эпидемиологические требования по профилактике инфекционных болезней».

8. Шлык И. В. Опыт внедрения системы контроля антимикробной терапии в многопрофильном стационаре // Вестник анестезиологии и реаниматологии. – 2019. – Т. 16, № 6. – С. 60–66. https://doi.org/10.21292/2078-5658-2019-16-6-60-66.

9. Abubakar U., Awaisu A., Khan A. H., Alam K. Impact of COVID-19 Pandemic on Healthcare-Associated Infections: A Systematic Review and Meta-Analysis // Antibiotics (Basel). – 2023. – Vol. 12, № 11. – P. 1600. https://doi.org/10.3390/antibiotics12111600.

10. Adelman M. W., Bhamidipati D. R., Hernandez-Romieu A. C. et al. Secondary Bacterial Pneumonias and Bloodstream Infections in Patients Hospitalized with COVID-19 // Ann Am Thorac Soc. – 2021. – Vol. 18, № 9. – P. 1584–1587. https://doi.org/10.1513/AnnalsATS.202009-1093RL.

11. Afzal A., Gutierrez V. P., Gomez E. et al. Bloodstream infections in hospitalized patients before and during the COVID-19 surge in a community hospital in the South Bronx // Int J Infect Dis. – 2022. – Vol. 116. – P. 43–46. https://doi.org/10.1016/j.ijid.2021.12.349.

12. Alshahrani K. M., Alhuwaishel A. Z., Alangari N. M. et al. Clinical Impacts and Risk Factors for Central Line-Associated Bloodstream Infection: A Systematic Review // Cureus. – 2023. – Vol. 15, № 6. https://doi.org/10.7759/cureus.40954.

13. Atriwal T., Azeem K., Husain F. M. et al. Mechanistic understanding of Candida albicans biofilm formation and approaches for its inhibition // Front Microbiol. – 2021. – Vol. 12. – P. 638609. https://doi.org/10.3389/fmicb.2021.638609.

14. Babich T., Zusman O., Elbaz M. et al. Empirical Antibiotic Treatment Does Not Improve Outcomes in Catheter-Associated Urinary Tract Infection: Prospective Cohort Study // Clin Infect Dis. – 2017. – Vol. 65, № 11. – P. 1799–1805. https://doi.org/10.1093/cid/cix680.

15. Blot S., Ruppé E., Harbarth S. et al. Healthcare-associated infections in adult intensive care unit patients: Changes in epidemiology, diagnosis, prevention and contributions of new technologies // Intensive Crit Care Nurs. – 2022. – Vol. 70. – P. 103227. https://doi.org/10.1016/j.iccn.2022.103227.

16. Bouhrour N., Nibbering P. H., Bendali F. Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens // Pathogens. – 2024. – Vol. 13, № 5. – P. 393. https://doi.org/10.3390/pathogens13050393.

17. Casalini G., Giacomelli A., Antinori S. The WHO fungal priority pathogens list: a crucial reappraisal to review the prioritization // Lancet Microbe. – 2024. – Vol. 5, № 7. – P. 717–724. https://doi.org/10.1016/S2666-5247(24)00042-9.

18. Denny S., Abdolrasouli A., Elamin T. et al. A retrospective multicenter analysis of candidaemia among COVID-19 patients during the first UK pandemic wave // J Infect. – 2021. – Vol. 82, № 6. – P. 276–316. https://doi.org/10.1016/j.jinf.2021.02.020.

19. Dhesi Z., Enne V. I., Brealey D. et al. Organisms causing secondary pneumonia in COVID-19 patients in 5 UK ICUs as detected with the FilmArray test // medRxiv. – 2020. – Vol. 06, № 22. – P. 20131573. https://doi.org/10.1101/2020.06.22.20131573.

20. European Centre for Disease Prevention and Control. Healthcare-associated infections acquired in intensive care units // ECDC Annual epidemiological report for 2017, 2019. URL: https://www.ecdc.europa.eu/sites/default/files/documents/AER_for_2017-HAI.pdf (дата обращения: 26.05.2024).

21. Fakih M. G., Bufalino A., Sturm L. et al. Coronavirus disease 2019 (COVID-19) pandemic, central-line-associated bloodstream infection (CLABSI), and catheter-associated urinary tract infection (CAUTI): The urgent need to refocus on hardwiring prevention efforts // Infect Control Hosp Epidemiol. – 2022. – Vol. 43, № 1. – P. 26–31. https://doi.org/10.1017/ice.2021.70.

22. Geffers C., Schwab F., Behnke M., Gastmeier P. No increase of device associated infections in German intensive care units during the start of the COVID-19 pandemic in 2020 // Antimicrob Resist Infect Control. – 2022. – Vol. 11, № 1. – P. 67. https://doi.org/10.1186/s13756-022-01108-9.

23. Girard R., Gaujard S., Pergay V. et al. Controlling urinary tract infections associated with intermittent bladder catheterization in geriatric hospitals // J Hosp Infect. – 2015. – Vol. 90, № 3. – P. 240–247. https://doi.org/10.1016/j.jhin.2015.02.008.

24. Girard R., Gaujard S., Pergay V. et al. Risk factors for urinary tract infections in geriatric hospitals // J Hosp Infect. – 2017. – Vol. 97, № 1. – P. 74–78. https://doi.org/10.1016/j.jhin.2017.05.007.

25. Goda R., Sharma R., Borkar S. A. et al. Frailty and Neutrophil Lymphocyte Ratio as Predictors of Mortality in Patients with Catheter-Associated Urinary Tract Infections or Central Line-Associated Bloodstream Infections in the Neurosurgical Intensive Care Unit: Insights from a Retrospective Study in a Developing Country // World Neurosurg. – 2022. – Vol. 162. – P. e187–e197. https://doi.org/10.1016/j.wneu.2022.02.115.

26. Gouel-Cheron A., Swihart B. J., Warner S. et al. Epidemiology of ICU-Onset Bloodstream Infection: Prevalence, Pathogens, and Risk Factors Among 150,948 ICU Patients at 85 U.S. Hospitals // Crit. Care Med. – 2022. – Vol. 50, № 12. – P. 1725–1736. https://doi.org/10.1097/CCM.0000000000005662.

27. Horn D. L., Neofytos D., Anaissie E. J. et al. Epidemiology and outcomes of candidemia in 2019 patients: Data from the prospective antifungal therapy alliance registry // Clin Infect Dis. – 2009. – Vol. 48. – P. 1695–1703. https://doi.org/10.1086/599039.

28. Kim S. J., Ryu J. H., Kim Y. B. et al. Management of Candida Urinary Tract Infection in the Elderly // Urogenital Tract Infection. – 2019. – Vol. 14, № 2. – P. 33–41. https://doi.org/10.14777/uti.2019.14.2.33.

29. Langford B. J., So M., Raybardhan S. et al. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis // Clin Microbiol Infect. – 2020. – Vol. 26, № 12. – P. 1622–1629. https://doi.org/10.1016/j.cmi.2020.07.016.

30. Liu J., Yu Y. T., Xu C. H. et al. Candida Colonization in the Respiratory Tract: What Is the Significance? // Front Med (Lausanne). – 2021. – Vol. 7. – P. 598037. https://doi.org/10.3389/fmed.2020.598037.

31. Markovskaya Y., Gavioli E. M., Cusumano J. A. et al. Coronavirus disease 2019 (COVID-19): Secondary bacterial infections and the impact on antimicrobial resistance during the COVID-19 pandemic // Antimicrob Steward Healthc Epidemiol. – 2022. – Vol. 2, № 1. – P. e114. https://doi.org/10.1017/ash.2022.253.

32. Martin-Loeches I., Antonelli M., Cuenca-Estrella M. et al. ESICM/ESCMID task force on practical management of invasive candidiasis in critically ill patients // Intensive Care Med. – 2019. – Vol. 45, № 6. – P. 789–805. https://doi.org/10.1007/s00134-019-05599-w.

33. Minasyan H. Sepsis: mechanisms of bacterial injury to the patient // Scand J Trauma Resusc Emerg Med. – 2019. – Vol. 27, № 1. – P. 19. https://doi.org/10.1186/s13049-019-0596-4.

34. Mirghani R., Saba T., Khaliq H. et al. Biofilms: Formation, drug resistance and alternatives to conventional approaches // AIMS Microbiol. – 2022. – Vol. 8, № 3. – P. 239–277. https://doi.org/10.3934/microbiol.2022019.

35. Moriyama K., Ando T., Kotani M. et al. Risk factors associated with increased incidences of catheter-related bloodstream infection // Medicine (Baltimore). – 2022. – Vol. 101, № 42. – P. e31160. https://doi.org/10.1097/MD.0000000000031160.

36. Nicolle L. E. Catheter associated urinary tract infections // Antimicrob Resist Infect Control. – 2014. – Vol. 25, № 3. – P. 23. https://doi.org/10.1186/2047-2994-3-23.

37. Novosad S. A., Fike L., Dudeck M. A. et al. Pathogens causing central-line-associated bloodstream infections in acute-care hospitals-United States, 2011-2017 // Infect Control Hosp Epidemiol. – 2020. – Vol. 41, № 3. – P. 313–319. https://doi.org/10.1017/ice.2019.303.

38. Pinto M., Borges V., Nascimento M. et al. Insights on catheter-related bloodstream infections: A prospective observational study on the catheter colonization and multidrug resistance // J. HosP. Infect. – 2022. – Vol. 123. – P. 43–51. https://doi.org/10.1016/j.jhin.2022.01.025.

39. Preda V. G., Săndulescu O. Communication is the key: biofilms, quorum sensing, formation and prevention // Discoveries (Craiova). – 2019. – Vol. 7, № 3. – P. e100. https://doi.org/10.15190/d.2019.13.

40. Raja N. S. Epidemiology, risk factors, treatment and outcome of Candida bloodstream infections because of Candida albicans and Candida non-albicans in two district general hospitals in the United Kingdom // Int J Clin Pract. – 2021. – Vol. 75, № 1. – P. e13655. https://doi.org/10.1111/ijcp.13655.

41. Rotini G., de Mangou A., Combe A. et al. Case Report: Severe Community-Acquired Pneumonia in Réunion Island due to Acinetobacter baumannii // Am J Trop Med Hyg. – 2024. – Vol. 111, № 1. – P. 136–140. https://doi.org/10.4269/ajtmh.23-0820.

42. Segala F. V., Pafundi P. C., Masciocchi C. et al. Incidence of bloodstream infections due to multidrug-resistant pathogens in ordinary wards and intensive care units before and during the COVID-19 pandemic: a real-life, retrospective observational study // Infection. – 2023. – Vol. 51, № 4. – P. 1061–1069. https://doi.org/10.1007/s15010-023-02000-3.

43. Shadkam S., Goli H. R., Mirzaei B. et al. Correlation between antimicrobial resistance and biofilm formation capability among Klebsiella pneumoniae strains isolated from hospitalized patients in Iran // Ann Clin Microbiol Antimicrob. – 2021. – Vol. 20. – P. 13. https://doi.org/10.1186/s12941-021-00418-x.

44. Stewart S., Robertson C., Kennedy S. et al. Personalized infection prevention and control: identifying patients at risk of healthcare-associated infection // J Hosp Infect. – 2021. – Vol. 114. – P. 32–42. https://doi.org/10.1016/j.jhin.2021.03.032.

45. Vincent J. L., Sakr Y., Singer M. et al. Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017 // JAMA. – 2020. – Vol. 323, № 15. – P. 1478–1487. https://doi.org/10.1001/jama.2020.2717.

46. Vuotto C., Longo F., Pascolini C. et al. Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains // J Appl Microbiol. – 2017. – Vol. 123. – P. 1003–1018. https://doi.org/10.1111/jam.13533.

47. WHO bacterial priority pathogens list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. URL: https://www.who.int/publications/i/item/9789240093461 (дата обращения: 26.05.2024).

48. Wongsurakiat P., Tulatamakit S. Clinical pulmonary infection score and a spot serum procalcitonin level to guide discontinuation of antibiotics in ventilator-associated pneumonia: a study in a single institution with high prevalence of nonfermentative gram-negative bacilli infection // Ther Adv Respir Dis. – 2018. – Vol. 12. – P. 1753466618760134. https://doi.org/10.1177/1753466618760134.

49. Xie X., Lyu J., Hussain T., Li M. Drug Prevention and Control of Ventilator-Associated Pneumonia // Front Pharmacol. – 2019. – Vol. 10. – P. 298. https://doi.org/10.3389/fphar.2019.00298.

50. Yang C. H., Su P. W., Moi S. H. et al. Biofilm formation in acinetobacter baumannii: genotype-phenotype correlation // Molecules (Basel, Switz). – 2019. – Vol. 24. – P. 1849. https://doi.org/10.3390/molecules24101849.


Рецензия

Для цитирования:


Руслякова И.А., Шамсутдинова Э.З., Дмитриева О.В., Широков К.И., Борзова Ю.В., Оришак Е.А., Васильева Н.В. Предикторы и этиология инфекций, связанных с оказанием медицинской помощи у пациентов с тяжелой внебольничной пневмонией. Вестник анестезиологии и реаниматологии. 2025;22(1):40-56. https://doi.org/10.24884/2078-5658-2025-22-1-40-56

For citation:


Ruslyakova I.A., Shamsutdinova E.Z., Dmitrieva O.V., Shirokov K.I., Borzova Yu.V., Orishak A.E., Vasilyeva N.V. Predictors and etiology of healthcare-associated infections in patients with severe community-acquired pneumonia. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2025;22(1):40-56. (In Russ.) https://doi.org/10.24884/2078-5658-2025-22-1-40-56



Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)