Preview

Вестник анестезиологии и реаниматологии

Расширенный поиск

Иммунная коррекция у пациентов с сепсисом (обзор литературы)

https://doi.org/10.24884/2078-5658-2024-21-2-103-111

Аннотация

Поиск отечественных публикаций по данной тематике проводили в базе данных на сайте РИНЦ, зарубежных – в базах PubMed и Google Scholar в период 2022–2023 гг. Анализ их показал, что активно изучаемые подходы к иммунной коррекции сепсиса направлены на изменение содержания или активности цитокинов, факторов роста, использование ингибиторов иммунных контрольных точек, а также супрессорных клеток миелоидного происхождения. При модуляции действия цитокинов используются разнообразные подходы: изменение сродства цитокинов к их рецепторам, продление периода полураспада цитокинов, коррекция их эффекта. Для безопасного и эффективного применения биорегуляторов с целью иммунной коррекции при сепсисе необходимы дополнительные многоцентровые исследования их клинической эффективности, в том числе с учетом стратификации пациентов на отдельные эндотипы и механизмов действия биорегуляторов. 

Об авторах

А. В. Степанов
Читинская государственная медицинская академия
Россия

Степанов Александр Валентинович  д-р мед. наук, профессор кафедры анестезиологии, реанимации и интенсивной терапии

672000, г. Чита, ул. Горького, д. 39а



К. Г Шаповалов
Читинская государственная медицинская академия
Россия

Шаповалов Константин Геннадьевич  д-р мед. наук, профессор, зав. кафедрой анестезиологии, реанимации и интенсивной терапии, заслуженный врач РФ

672000, г. Чита, ул. Горького, д. 39а



Список литературы

1. Петрова М. В., Бутров А. В., Кулабухов В. В. и др. Аспекты формирования энцефалопатии и миокардиопатии при сепсисе // Вестник анестезиологии и реаниматологии. – 2023. – Т. 20, № 5. – С. 84‒91. DOI: 10.24884/2078-5658-2023-20-5-84-91.

2. Bailly C., Thuru X., Goossens L. et al. Soluble TIM-3 as a biomarker of progression and therapeutic response in cancers and other of human diseases // Biochem. Pharmacol. – 2023. ‒ № 209. ‒ P. 115445. DOI: 10.1016/j.bcp.2023.115445.

3. Berlot G., Zanchi S., Moro E. et al. The role of the intravenous IgA and IgM-enriched immunoglobulin preparation in the treatment of sepsis and septic shock // J. Clin. Med. – 2023. ‒ № 12. – P. 4614‒4645. DOI: 10.3390/jcm12144645

4. Cai J., Zhang Z., Li C. et al. Bursal-derived BP7 induces the mirna molecular basis of chicken macrophages and promotes the differentiation of b cells // Vaccines (Basel). – 2022. ‒ Vol. 18, № 10. ‒ P. 1911‒1960. DOI: 10.3390/vaccines10111960.

5. Cavaillon J. M. During sepsis and COVID-19, the pro-inflammatory and anti-inflammatory responses are concomitant // Clin. Rev. Allergy Immunol. – 2023. ‒ Vol. 65, № 2. ‒ P. 183‒187. DOI: 10.1007/s12016-023-08965-1.

6. Chen Y., Dong P., Zhang X. Research advance on the role of pro-inflammatory cytokines in sepsis // Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. ‒ 2023. ‒ Vol. 35, № 2. ‒ P. 212‒216. DOI: 10.3760/cma.j.cn121430-20220919-00846.

7. Daix T., Mathonnet A., Brakenridge S. et al. Intravenously administered interleukin-7 to reverse lymphopenia in patients with septic shock: a double-blind, randomized, placebo-controlled trial // Ann Intensive Care. – 2023. ‒ Vol. 12, № 13. ‒ P. 1‒17. DOI: 10.1186/s13613-023-01109-w.

8. Dutta P., Bishayi B. IL-10 in combination with IL-12 and TNF-α attenuates CXCL8/CXCR1 axis in peritoneal macrophages of mice infected with Staphylococcus aureus through the TNFR1-IL-1R-NF-κB pathway // Int. Immunopharmacol. – 2023. ‒ № 120. ‒ P. 110297. DOI: 10.1016/j.intimp.2023.110297.

9. Ellis-Connell A. L., Balgeman A. J., Harwood O. E. et al. Control of simian immunodeficiency virus infection in prophylactically vaccinated, antiretroviral treatment-naive macaques is required for the most efficacious CD8 T Cell response during treatment with the interleukin-15 superagonist N-803 // J. Virol. – 2022. ‒ Vol. 96, № 20. ‒ P. e0118522. DOI: 10.1128/jvi.01185-22.

10. Fu X., Liu Z., Wang Y. advances in the study of immunosupressive mechanisms in sepsis // J. Inflamm. Res. – 2023. – Vol. 8, № 16. – P. 3967‒3981. DOI: 10.2147/JIR.S426007.

11. Gharamti A. A., Samara O., Monzon A. et al. Proinflammatory cytokines levels in sepsis and healthy Volunteers, and tumor necrosis factor-alpha associated sepsis mortality: A systematic review and meta-analysis // Cytokine. – 2022. – № 158. – P. 156006. DOI: 10.1016/j.cyto.2022.156006.

12. Giamarellos-Bourboulis E. J., Dimopoulos G., Flohé S. et al. The European shoch society meets the immunosep consortium for personalizet sepsis treatment // Shock. – 2023. – Vol. 59, № 1. – P. 21‒25. DOI: 10.1097/SHK.0000000000001955.

13. Gou X., Xu W., Liu Y. et al. IL-6 prevents lung macrophage death and lung inflammation injury by inhibiting GSDME- and GSDMD-mediated pyroptosis during pneumococcal pneumosepsis // Microbiol. Spectr. – 2022. – Vol. 10, № 2. – P. e0204921. DOI: 10.1128/spectrum.02049-21.

14. Haak D. A. C., Otten L. S., Koenen H. J. P. M. et al. Evidence-based rationale for low dose niVolumab in critically ill patients with sepsis-induced immunosuPression // Clin. Transl. Sci. – 2023. – Vol. 16, № 6. – P. 978‒986. DOI: 10.1111/cts.13503.

15. Hong T., Li S., Guo X. et al. IL-13 derived type 2 innate lymphocytes ameliorates cardiomyocyte apoptosis through STAT3 signaling pathway // Front. Cell Dev. Biol. – 2021. – Vol. 20, № 9. – P. 742662. DOI: 10.3389/fcell.2021.742662.

16. Ibrahim R., Saleh K., Chahine C. et al. LAG-3 Inhibitors: Novel Immune Checkpoint Inhibitors Changing the Landscape of Immunotherapy // Biomedicines. – 2023. – Vol. 11, № 7. – P. 1878. DOI: 10.3390/biomedicines11071878.

17. Joshi I., Carney W. P., Rock E. P. Utility of monocyte HLA-DR and rationale for therapeutic GM-CSF in sepsis immunoparalysis // Front Immunol. – 2023. – Vol. 7, № 14. – P. 1130214. DOI: 10.3389/fimmu.2023.1130214.

18. Kim G. R., Choi J. M. Current understanding of cytotoxic T lymphocyte antigen-4 (CTLA-4) signaling in T-cell biology and disease therapyhttps://pubmed. ncbi.nlm.nih.gov/35950451/ // Mol. Cells. – 2022. – Vol. 45, № 8. – P. 513‒521. DOI: 10.14348/molcells.2022.2056.

19. Kotsaki A., Pickkers P., Bauer M. et al. ImmunoSep (Personalised Immunotherapy in Sepsis) international double-blind, double-dummy, placebo-controlled randomised clinical trial: study protocol // BMJ Open. – 2022. – Vol. 12, № 12. – P. e067251. DOI: 10.1136/bmjopen-2022-067251.

20. Lange A., Cajander S., Magnuson A. et al. Sustained elevation of soluble B- and T- lymphocyte attenuator predicts long-term mortality in patients with bacteremia and sepsis // PLoS One. – 2022. – Vol. 17, № 3. – P. e0265818. DOI: 10.1371/journal.pone.0265818.

21. Leonard W. J., Lin J. X. Strategies to therapeutically modulate cytokine action // Nat. Rev. Drug. Discov. – 2023. – Vol. 22, № 10. – P. 827‒854. DOI: 10.1038/s41573-023-00746-x.

22. Leśnik P., Janc J., Mierzchala-Pasierb M. et al. Interleukin-7 and interleukin-15 as prognostic biomarkers in sepsis and septic shock: Correlation with inflammatory markers and mortality // Cytokine. – 2023. – № 169. – P. 156277. DOI: 10.1016/j.cyto.2023.156277.

23. Liang Y., Guan C., Meng H. et al. Effects of interleukin-17A on liver and kidney injury and prognosis in septic mice. Zhonghua Wei Zhong Bing. Ji Jiu Yi Xue, 2023, vol. 35, no. 6, pp. 592‒597. DOI: 10. 3760/cma.j.cn121430-20230110-00011.

24. Liu N., Pang X., Zhang H. et al. the cgas-sting pathway in bacterial infection and bacterial immunity // Front. Immunol. – 2022. ‒ № 12. – P. 814709. DOI: 10.3389/fimmu.2021.814709.

25. Liu S., Wang C., Jiang Z. et al. Tim-3 blockade decreases the apoptosis of CD8+ T cells and reduces the severity of sepsis in mice // J. Surg. Res. – 2022. – № 279. – P. 8‒16. DOI: 10.1016/j.jss.2022.05.014.

26. Liu D., Huang S. Y., Sun J. H. et al. Sepsis-induced immunosuPression: mechanisms, diagnosis and current treatment options // Mil. Med. Res. – 2022. – Vol. 9, № 1. – P. 56. DOI: 10.1186/s40779-022-00422-y.

27. Loo G., Bertrand M. J. M. Death by TNF: a road to inflammation // Nat. Rev. Immunol. – 2023. – Vol. 23, № 5. – P. 289‒303. DOI: 10.1038/s41577-022-00792-3.

28. Manchikalapati R., Schening J., Farias A. J. et al. Clinical utility of interleukin-1 inhibitors in pediatric sepsis // Shock. – 2023. – Vol. 59, № 9. – P. 21‒25. DOI: 10.1097/SHK.0000000000002223.

29. Marques A., Torre C., Pinto R. et al. Treatment advances in sepsis and septic shock: modulating pro- and anti-inflammatory mechanisms // J. Clin. Med. – 2023. – Vol. 12, № 8. – P. 2892. DOI: 10.3390/jcm12082892.

30. Martins Y. C., Ribeiro-Gomes F. L., Daniel-Ribeiro C. T. A short history of immunity // Mem. Inst. Oswaldo Cruz. – 2023. – № 118. – P. e230023. DOI: 10.1590/0074-02760230023.

31. Morita N., Hoshi M., Tezuka H. et al. CD8+ Regulatory T cells induced by lipopolysaccharide improve mouse endotoxin shock // Immunohorizons. – 2023. – Vol. 7, № 5. – P. 353‒363. DOI: 10.4049/immunohorizons.

32. Ostrand-Rosenberg S., Lamb T. J., Pawelec G. et al. There, and everywhere: myeloid-derived supressor cells in immunology // J. Immunol. – 2023. – Vol. 210, № 9. – P. 1183‒1197. DOI: 10.4049/jimmunol.2200914.

33. Papathanakos G., Andrianopoulos I., Xenikakis M. et al. Clinical sepsis phenotypes in critically ill patients // Microorganisms. – 2023. – Vol. 11, № 9. – P. 2165. DOI: 10.3390/microorganisms11092165.

34. Reizine F., Grégoire M., Lesouhaitier M. et al. Beneficial effects of citrulline enteral administration on sepsis-induced T cell mitochondrial dysfunction // Proc. Natl. Acad. Sci. U S A. – 2022. – Vol. 119, № 8. – P. e2115139119. DOI: 10.1073/pnas.2115139119.

35. Rienzo M., Skirecki T., Monneret G. et al. Immune checkpoint inhibitors for the treatment of sepsis:insights from preclinical and clinical development // Expert Opin. Investig. Drugs. – 2022. – Vol. 31, № 9. – P. 885‒894. DOI: 10.1080/13543784.2022.2102477.

36. Sawoo R., Dey R., Ghosh R. et al. Exogenous IL-10 posttreatment along with TLR4 and TNFR1 blockade improves tissue antioxidant status by modulating sepsis-induced macrophage polarization // J. APl. Toxicol. – 2023. – Vol. 43, № 10. – P. 1549‒1572. DOI: 10.1002/jat.4496.

37. Saxton R. A., Glassman C. R., Garcia K. C. Emerging principles of cytokine pharmacology and therapeutics // Nat. Rev. Drug. Discov. – 2023. – Vol. 22, № 1. – P. 21‒37. DOI: 10.1038/s41573-022-00557-6.

38. Silva E. E., Skon-Hegg C., Badovinac V. P. et al. The calm after the storm: implications of sepsis immunoparalysis on host immunity // J. Immunol. – 2023. – Vol. 211, № 5. – P. 711‒719. DOI: 10.4049/jimmunol.2300171.

39. Sinha P., Meyer N. J., Calfee C. S. Biological phenotyping in sepsis and acute respiratory distress syndrome // Annu. Rev. Med. – 2023. – № 74. – P. 457‒471. DOI: 10.1146/urev-med-043021-014005.

40. Su J., Tong Z., Wu S., Zhou F. et al. Research progress of DcR3 in the diagnosis and treatment of sepsis // Int. J. Mol. Sci. – 2023. – Vol. 24, № 16. – P. 12916. DOI: 10.3390/ijms241612916.

41. Tao N., Xu X., Ying Y. et al. thymosin α1 and its role in viral infectious diseases: the mechanism and clinical aplication // Molecules. – 2023. – Vol. 28, № 8. – P. 3539. DOI: 10.3390/molecules28083539.

42. Unar A., Bertolino L., Patauner F. et al. Decoding sepsis-induced disseminated intravascular coagulation: a comprehensive review of existing and emerging therapies // J. Clin. Med. – 2023. – Vol. 12, № 19. – P. 6128. DOI: 10.3390/jcm12196128.

43. Vasconcelos I., Santos T. Nanotechnology applications in sepsis: essential knowledge for clinicianshttps://pubmed.ncbi.nlm.nih.gov/37376129/ // Pharmaceutics. – 2023. – Vol. 15, № 6. – P. 1682. DOI: 10.3390/pharmaceutics15061682.

44. Yi M., Zheng X., Niu M. et al. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions // Mol. Cancer. – 2022. – Vol. 21, № 1. ‒ P. 28. DOI: 10.1186/s12943-021-01489-2.

45. Weber B., Sturm R., Henrich D. et al. Diagnostic and prognostic potential of exosomal cytokines IL-6 and IL-10 in polytrauma patients // Int. J. Mol. Sci. – 2023. – Vol. 24, № 14. – P. 11830. DOI: 10.3390/ijms241411830.

46. Wiersinga W. J., van der Poll T. Immunopathophysiology of human sepsis // EBioMedicine. – 2022. – № 86. – P. 104363. DOI: 10.1016/j.ebiom.2022.104363.

47. Winer H., Rodrigues G. O. L., Hixon J. A. et al. IL-7: Comprehensive review // Cytokine. – 2022. – № 160. – P. 156049. DOI: 10.1016/j.cyto.2022.156049.

48. Wu H., Tang T., Deng H. et al. Immune checkpoint molecule Tim-3 promotes NKT cell apoptosis and predicts poorer prognosis in Sepsis // Clin. Immunol. – 2023. – № 254. – P. 109249. DOI: 10.1016/j.clim.2023.109249.

49. Zhang W., Fang X., Gao C. et al. MDSCs in sepsis-induced immunosu pression and its potential therapeutic targets // Cytokine Growth. Factor Rev. – 2023. – № 69. – P. 90‒103. DOI: 10.1016/j.cytogfr.2022.07.007.

50. Zheng X., Wu Y., Bi J. et al. The use of supercytokines, immunocytokines, engager cytokines, and other synthetic cytokines in immunotherapy // Cell Mol. Immunol. – 2022. – Vol. 19, № 2. – P. 192‒209. DOI: 10.1038/s41423-021-00786-6.


Рецензия

Для цитирования:


Степанов А.В., Шаповалов К.Г. Иммунная коррекция у пациентов с сепсисом (обзор литературы). Вестник анестезиологии и реаниматологии. 2024;21(2):103-111. https://doi.org/10.24884/2078-5658-2024-21-2-103-111

For citation:


Stepanov A.V., Shapovalov K.G. Immune correction in patients with sepsis (literature review). Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2024;21(2):103-111. (In Russ.) https://doi.org/10.24884/2078-5658-2024-21-2-103-111



Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)