Preview

Messenger of ANESTHESIOLOGY AND RESUSCITATION

Advanced search

Modern approaches to brain imaging in drug addiction (literature review)

https://doi.org/10.24884/2078-5658-2022-20-4-89-96

Abstract

Background. Brain neuroimaging studies provided information about the neurobiological effects of narcotic substances, and established the mechanisms of their systematic use, as well as provided important information about the subjective experience and behavior of people with drug addiction, including their struggle for recovery. Until recently, five main methods of brain neuroimaging were considered – structural magnetic resonance imaging (MRI), functional MRI (fMRI), magnetic resonance spectroscopy (MRS), positron emission tomography (PET) and single-photon emission computed tomography (SPECT). These methods allow us to identify various aspects of the structure or function of the brain. Microwave thermometry (MR thermometry) is also used as a neuroimaging method of the brain, which allows us to study the temperature homeostasis of the brain in various human conditions.

Materials and methods. The search for domestic publications was carried out in the database on the RSCI website, foreign – in the PubMed, Google Scholar databases in the period 1990–2022. When analyzing the PubMed database, the query «neuroimaging drug addiction» found 16066 links. We also studied works on the following keywords: «neurotransmitters and drug abuse». Publications describing the clinical picture, diagnosis, and poisoning with psychoactive substances were analyzed. A total of 45 articles were analyzed.

Conclusion. The obtained results strongly confirm that drug addiction is a brain disease that causes important disorders in many areas, including pathways affecting encouragement and cognition. Neuroimaging methods allow researchers to observe the effect of drug substances on the brain and compare the structure, functions and metabolism of the brain in people who abuse and do not abuse drug’s substances. MR thermometry allows measuring the temperature of the brain, which is a reflection of the metabolism of the brain and allows assessing the effect of various substances on the brain. However, nowadays, there is not enough information about the change in cerebral temperature when using psychoactive substances.

About the Authors

D. V. Cheboksarov
Federal Scientific and Clinical Center of Intensive Care and Rehabilitation
Russian Federation

Cheboksarov Dmitry V. Cand. of Sci. (Med.), Senior Research Fellow, Federal Scientific and Clinical Center of Intensive Care and Rehabilitation

777, Lytkino village, Solnechnogorsk city district, Moscow region, Moscow, 141534

тел.: +79629115169



M. V. Petrova
Federal Scientific and Clinical Center of Intensive Care and Rehabilitation; Medical Institute of the Peoples’ Friendship University of Russia named after Patrice Lumumba
Russian Federation

Petrova Marina V. Dr. of Sci. (Med.), Professor of the Russian Academy of Sciences, Deputy Director for Scientific and Clinical Activities Federal Scientific and Clinical Center of Intensive Care and Rehabilitation; Head of the Department of Anesthesiology and Intensive Care with Rehabilitation Course, Medical Institute of the Peoples’ Friendship University of Russia named after Patrice Lumumba

777, Lytkino village, Solnechnogorsk city district, Moscow region, Moscow, 141534

6, Miklukho-Maklaya str., Moscow, 117198



A. Yu. Simonova
N. V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Simonova Anastasia Y. Cand. of Sci. (Med.), Leading Research Fellow of the Departments of Acute Poisoning and Somatopsychiatric Disorders, N.V. Sklifosovsky Research Institute for Emergency Medicine

3, Bolshaya Sukharevskaya sq., Moscow, 129090



O. V. Strunin
Medical Institute of the Peoples’ Friendship University of Russia named after Patrice Lumumba
Russian Federation

Strunin Oleg V. Dr. of Sci. (Med.), Anesthesiologist-resuscitator, Professor of the Department of Anesthesiology and Intensive Care with Rehabilitation Course, Medical Institute of the Peoples’ Friendship University of Russia named after Patrice Lumumba JSC «Medicine»

6, Miklukho-Maklaya str., Moscow, 117198



O. V. Ryzhova
Federal Scientific and Clinical Center of Intensive Care and Rehabilitation
Russian Federation

Ryzhova Olga V. Medical Rehabilitation Doctor, Federal Scientific and Clinical Center of Intensive Care and Rehabilitation

777, Lytkino village, Solnechnogorsk city district, Moscow region, Moscow, 141534



A. K. Shabanov
Federal Scientific and Clinical Center of Intensive Care and Rehabilitation; N. V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Shabanov Aslan K. Dr. of Sci. (Med.), Associate Professor, Leading Research Fellow of the Department of General Resuscitation, Deputy Chief Physician for Anesthesiology and Resuscitation of the N. V. Sklifosovsky Research Institute for Emergency Medicine; Leading Research Fellow at the Laboratory of Clinical Pathophysiology of Critical Conditions, Research Institute of General Resuscitation “Federal Scientific and Clinical Center of Intensive Care and Rehabilitation”

777, Lytkino village, Solnechnogorsk city district, Moscow region, Moscow, 141534

3, Bolshaya Sukharevskaya sq., Moscow, 129090



S. S. Petrikov
N. V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Petrikov Sergey S. Dr. of Sci. (Med.), Corresponding Member of the Russian Academy of Sciences, Director of the N. V. Sklifosovsky Research Institute for Emergency Medicine

3, Bolshaya Sukharevskaya sq., Moscow, 129090



References

1. Bechara A., Dolan S., Denburg N. et al. Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers // Neuropsychologia. – 2001. – Vol. 39, № 4. – P. 376–389. Doi: 10.1016/s0028-3932(00)00136-6.

2. Bechara A., Damasio A. R., Damasio H. et al. Insensitivity to future consequences following damage to human prefrontal cortex // Cognition. – 1994. – Vol. 50, № 1–3. – P. 7–15. Doi: 10.1016/0010-0277(94)90018-3.

3. Bolla K. I., Eldreth D. A., London E. D. et al. Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task // NeuroImage. – 2003. – Vol. 19, № 3. – P. 1085–1094. Doi: 10.1016/s1053-8119(03)00113-7.

4. Breiter H. C., Rosen B. R. Functional magnetic resonance imaging of brain reward circuitry in the human // Annals of the New York Academy of Sciences. – 1999. – Vol. 877. – P. 523–547. Doi: 10.1111/j.1749-6632.1999.tb09287.x.

5. Breiter H. C., Gollub R. L., Weisskoff R. M. et al. Acute effects of cocaine on human brain activity and emotion // Neuron. – 1997. – Vol. 19, № 3. – P. 591–611. Doi: 10.1016/s0896-6273(00)80374-8.

6. Chang L., Cloak C., Patterson K. et al. Enlarged striatum in abstinent methamphetamine abusers: a possible compensatory response // Biol Psychiatry. – 2005. – Vol. 57, № 9. – P. 967–974. Doi: 10.1016/j.biopsych.2005.01.039.

7. Chang L., Ernst T., Strickland T. et al. Gender effects on persistent cerebral metabolite changes in the frontal lobes of abstinent cocaine users // American Journal of Psychiatry. – 1999. – Vol. 156, № 5. – P. 716–722. Doi: 10.1176/ajp.156.5.716.

8. Di Chiara G., Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats // Proc Natl Acad Sci U S A. – 1988. – Vol. 85, № 14. – P. 5274–5278. Doi: 10.1073/pnas.85.14.5274.

9. Di Chiara G. Drug addiction as dopamine-dependent associative learning disorder // European Journal of Pharmacology. – 1999. – Vol. 375, № 1–3. – P. 13–30. Doi: 10.1016/s0014-2999(99)00372-6.

10. Drevets W. C., Gautier C., Price J. C. et al. Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria // Biological Psychiatry. – 2001. – Vol. 49, № 2. – P. 81–96. Doi: 10.1016/s0006-3223(00)01038-6.

11. Ernst T., Chang L., Leonido-Yee M. et al. Evidence for long-term neurotoxicity associated with methamphetamine abuse: A 1H MRS study // Neurology. – 2000. – Vol. 54, № 6. – P. 1344–1349. Doi: 10.1212/wnl.54.6.1344.

12. Eslinger P. J., Grattan L. M., Damasio H. et al. Developmental consequences of childhood frontal lobe damage // Archives of Neurology. – 1992. – Vol. 49, № 7. – P. 764–769. Doi: 10.1001/archneur.1992.00530310112021.

13. Fein G., Di Sclafani V., Cardenas V. A. et al. Cortical gray matter loss in treatment-naïve alcohol dependent individuals // Alcoholism: Clinical and Experimental Research. – 2002. – Vol. 26, № 4. – P. 558–564. PMID: 11981133.

14. Fowler J. S., Volkow N. D., Kassed C. A. et al. Imaging the addicted human brain // Science & practice perspectives. – 2007. – Vol. 3, № 2. – P. 4–16. Doi: 10.1151/spp07324.

15. Goryanin I., Karbainov S., Shevelev O. et al. Passive microwave radiometry in biomedical studies // Drug discovery today. – 2020. – Vol. 25, № 4. – P. 757–763. Doi: 10.1016/j.drudis.2020.01.016.

16. Gur R. E., Maany V., Mozley P. D. et al. Subcortical MRI volumes in neuroleptic- naive and treated patients with schizophrenia // American Journal of Psychiatry. – 1998. – Vol. 155, № 12. – P. 1711–1717. Doi: 10.1176/ajp.155.12.1711.

17. Hill S. Y., De Bellis M. D., Keshavan M. S. et al. Right amygdala volume in adolescent and young adult offspring from families at high risk for developing alcoholism // Biological Psychiatry. – 2001. – Vol. 49, № 11. – P. 894–905. Doi: 10.1016/s0006-3223(01)01088-5.

18. Jacobsen L. K., Giedd J. N., Gottschalk C. et al. Quantitative morphology of the caudate and putamen in patients with cocaine dependence // American Journal of Psychiatry. – 2001. – Vol. 158, № 3. – P. 486–489. Doi: 10.1176/appi.ajp.158.3.486.

19. Jernigan T. L., Gamst A. C., Archibald S. L. et al. Effects of methamphetamine dependence and HIV infection on cerebral morphology // American Journal of Psychiatry. – 2005. – Vol. 162, № 8. – P. 1461–1472. Doi: 10.1176/appi.ajp.162.8.1461.

20. Kim S. J., Lyoo I. K., Hwang J. et al. Prefrontal grey-matter changes in short-term and long-term abstinent methamphetamine abusers // International Journal of Neuropsychopharmacology. – 2005. – Vol. 9, № 2. – P. 221–228. Doi: 10.1017/S1461145705005699.

21. Kufahl P. R., Li Z., Risinger R. C. et al. Neural responses to acute cocaine administration in the human brain detected by fMRI // Neuroimage. – 2005. – Vol. 28, № 4. – P. 904–914. Doi: 10.1016/j.neuroimage.2005.06.039.

22. Laruelle M., Abi-Dargham A., van Dyck C. H. et al. SPECT imaging of striatal dopamine release after amphetamine challenge // Journal of Nuclear Medicine. – 1995. – Vol. 36, № 7. – P. 1182–1190. PMID: 7790942.

23. Leshner A. I. Addiction is a brain disease, and it matters // Science. – 1997. – Vol. 278, № 5335. – P. 45–47. Doi: 10.1126/science.278.5335.45.

24. Liu X., Matochik J. A., Cadet J. L. et al. Smaller volume of prefrontal lobe in polysubstance abusers: a magnetic resonance imaging study // Neuropsychopharmacology. – 1998. – Vol. 18, № 4. – P. 243–252. Doi: 10.1016/S0893-133X(97)00143-7.

25. Marinelli L., Trompetto C., Ghilardi M. F. Brain temperature as a measure of misfolded proteins metabolism // Med Hypotheses. – 2017. – Vol. 101. – P. 11. Doi: 10.1016/j.mehy.2017.02.001.

26. Matochik J. A., London E. D., Eldreth D. A. et al. Frontal cortical tissue composition in abstinent cocaine abusers: a magnetic resonance imaging study // Neuroimage. – 2003. – Vol. 19, № 3. – P. 1095–1102. Doi: 10.1016/s1053-8119(03)00244-1.

27. O’Neill J., Cardenas V. A., Meyerhoff D. J. Effects of abstinence on the brain: quantitative magnetic resonance imaging and magnetic resonance spectroscopic imaging in chronic alcohol abuse // Alcohol Clin Exp Res. – 2001. – Vol. 25, № 11. – P. 1673–1682. PMID: 11707642.

28. Paulus M. P., Hozack N. E., Zauscher B. E. et al. Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects // Neuropsychopharmacology. – 2002. – Vol. 26, № 1. – P. 53–63. Doi: 10.1016/S0893-133X(01)00334-7.

29. Pfefferbaum A., Sullivan E. V., Rosenbloom M. J. et al. A controlled study of cortical gray matter and ventricular changes in alcoholic men over a 5-year interval // Arch Gen Psychiatry. – 1998. – Vol. 55, № 10. – P. 905–912. Doi: 10.1001/archpsyc.55.10.905.

30. Rae C., Lee M. A., Dixon R. M. et al. Metabolic abnormalities in developmental dyslexia detected by 1H magnetic resonance spectroscopy // Lancet. – 1998. – Vol. 351, № 9119. – P. 1849–1852. Doi: 10.1016/S0140-6736(97)99001-2.

31. Rango M., Piatti M., Di Fonzo A. et al. Abnormal brain temperature in early- onset Parkinson’s disease // Mov Disord. – 2016. – Vol. 31, № 3. – P. 425–426. Doi: 10.1002/mds.26548.

32. Risinger R. C., Salmeron B. J., Ross T. J. et al. Neural correlates of high and craving during cocaine self-administration using BOLD fMRI // Neuroimage. – 2005. – Vol. 26, № 4. – P. 1097–1108. Doi: 10.1016/j.neuroimage. 2005.03.030.

33. Ruffmann C., Zini M., Goldwurm S. et al. Lewy body pathology and typical Parkinson disease in a patient with a heterozygous (R275W) mutation in the Parkin gene (PARK2) // Acta Neuropathol. – 2012. – Vol. 123, № 6. – P. 901–903. Doi: 10.1007/s00401-012-0991-7.

34. Schlaepfer T. E., Lancaster E., Heidbreder R. et al. Decreased frontal white-matter volume in chronic substance abuse // Int J Neuropsychopharmacol. – 2006. – Vol. 9, № 2. – P. 147–153. Doi: 10.1017/S1461145705005705.

35. Smith L. M., Chang L., Yonekura M. L. et al. Brain proton magnetic resonance spectroscopy and imaging in children exposed to cocaine in utero // Pediatrics. – 2001. – Vol. 107, № 2. – P. 227–231. Doi: 10.1542/peds.107.2.227.

36. Thompson P. M., Hayashi K. M., Simon S. L. et al. Structural abnormalities in the brains of human subjects who use methamphetamine // J Neurosci. – 2004. – Vol. 24, № 26. – P. 6028–6036. Doi: 10.1523/JNEUROSCI.0713-04.2004.

37. Volkow N. D., Chang L., Wang G. J. et al. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers // Am J Psychiatry. – 2001. – Vol. 158, № 3. – P. 377–382. Doi: 10.1176/appi. ajp.158.3.377.

38. Volkow N. D., Fowler J. S., Wang G. J. et al. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers // Synapse. – 1993. – Vol. 14, № 2. – P. 169–177. Doi: 10.1002/syn.890140210.

39. Volkow N. D., Wang G. J., Fowler J. S. et al. Decreases in dopamine receptors but not in dopamine transporters in alcoholics // Alcohol Clin Exp Res. – 1996. – Vol. 20, № 9. – P. 1594–1598. Doi: 10.1111/j.1530-0277.1996.tb05936.x.

40. Volkow N. D., Fowler J. S., Wolf A. P. et al. Effects of chronic cocaine abuse on postsynaptic dopamine receptors // Am J Psychiatry. – 1990. – Vol. 147, № 6. – P. 719–724. Doi: 10.1176/ajp.147.6.719.

41. Volkow N. D., Chang L., Wang G. J. et al. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex // Am J Psychiatry. – 2001. – Vol. 158, № 12. – P. 2015–2021. Doi: 10.1176/appi.ajp.158.12.2015.

42. Volkow N. D., Wang G. J., Fowler J. S. et al. Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D(2) receptors // J Pharmacol Exp Ther. – 1999. – Vol. 291, № 1. – P. 409–415.

43. Wang G. J., Volkow N. D., Fowler J. S. et al. Dopamine D2 receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal // Neuropsychopharmacology. – 1997. – Vol. 16, № 2. – P. 174–182. Doi: 10.1016/S0893-133X(96)00184-4.


Review

For citations:


Cheboksarov D.V., Petrova M.V., Simonova A.Yu., Strunin O.V., Ryzhova O.V., Shabanov A.K., Petrikov S.S. Modern approaches to brain imaging in drug addiction (literature review). Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2023;20(4):89-96. (In Russ.) https://doi.org/10.24884/2078-5658-2022-20-4-89-96



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)