Algorithm for the selection of drugs for targeted antimicrobial therapy based on the results of molecular biological studies of positive blood cultures
https://doi.org/10.24884/2078-5658-2022-20-2-96-107
Abstract
Cardinal changes in approaches to the choice of antimicrobial therapy for severe infections have occurred in recent years. They are associated with the growth of antibiotic resistance of nosocomial pathogens and the lack of sufficiently effective «universal» schemes of empirical antibiotic therapy. Recent international and domestic recommendations focus on a «pathogen-specific» approach aimed at the treatment of infections caused by specific problematic resistant pathogens. The application of such «pathogen-specific» recommendations is not possible without the availability of appropriate quality microbiological data. The further evolution of diagnostic methods is directed creating test systems that allow detecting the main pathogens of infection and the most important antibiotic resistance genes, allowing to reduce the time from the moment of taking clinical material for microbiological examination to obtaining the result that affects the choice of antibiotic therapy regimen. The review contains practical recommendations on the choice of drugs for targeted antimicrobial therapy based on the clinical interpretation of the results obtained using the «hyperplex» panel BioFire BCID2 (Blood Culture Identification 2BCID2), taking into account the statements set out in the guidelines «Diagnosis and antimicrobial therapy for infections caused by polyresistant strains of microorganisms».
About the Authors
А. V. DekhnichRussian Federation
Andrey V. Dekhnich, Cand. of Sci. (Med.), Deputy Director for Scientific Work
Antimicrobial Chemotherapy Research Institute
214019
28, Krupskaya str.
Smolensk
Tel.: 8 (481) 261-08-47
A. Yu. Kuzmenkov
Russian Federation
Alexey Yu. Kuzmenkov, Cand. of Sci. (Med.), Deputy Director for Bioinformatics
Antimicrobial Chemotherapy Research Institute
214019
28, Krupskaya str.
Smolensk
Tel.: 8 (481) 261-08-47
D. A. Popov
Russian Federation
Dmitriy A. Popov, Dr. of Sci. (Med.), Professor of RAS, Head of the Laboratory, Professor
Laboratory of Clinical Microbiology and Antimicrobial Therapy
Anesthesiology and Intensive Care Department with a Course of Clinical Laboratory Diagnostics
121552
125, Roubyevskoe shosse
Moscow
Tel.: 8 (812) 338–78–23
I. V. Shlyk
Russian Federation
Irina V. Shlyk, Dr. of Sci. (Med.), Professor, Deputy Chief Physician for Anesthesiology and Intensive Care of the Clinic
Anesthesiology and Intensive Care Department
197022
6-8, Lva Tolstogo str.
Saint Petersburg
M. V. Edelshtein
Russian Federation
Mikhail V. Edelshtein, Cand. of Sci. (Biol.), Head of Laboratory
Antimicrobial Chemotherapy Research Institute
Antibiotic Resistance Laboratory
214019
28, Krupskaya str.
Smolensk
Tel.: 8 (481) 261-08-47
References
1. Beloborodov V. B., Goloschapov O. V., Gusarov V. G. et al. Guidelines of the Association of Anesthesiologists-Intensivists, the Interregional Non-Governmental Organization Alliance of Clinical Chemotherapists and Microbiologists, the Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC), and NGO Russian Sepsis Forum “Diagnostics and antimicrobial therapy of the infections caused by multiresistant microorganisms” (update 2022). Messenger of anesthesiology and resuscitation, 2022, vol. 19, no. 2, pp. 84-114. (In Russ.) doi: 10.21292/2078-5658-2022-19-2-84-114.
2. BIOFIRE Blood Culture Identification 2 Panel (BCID2). (Epub.), Available: https://www.biomerieux-russia.com/клиническая-диагностика/продукт/панель-biofire®-bcid2 (Accessed 15. 03. 2023).
3. Both A., Berneking L., Berinson B. et al. Rapid identification of the vanA/vanB resistance determinant in Enterococcus sp. from blood cultures using the Cepheid Xpert vanA/vanB cartridge system // Diagn Microbiol Infect Dis. – 2020. – Vol. 96. – P. 114977. doi: 10.1016/j.diagmicrobio.2019.114977.
4. Camelena F. Performances et impact thérapeutique du BioFire Blood Culture Identification 2 (BCID2) Panel au cours du sepsis / 23es Journées Nationales d’Infectiologie. – Monpellier, France, 2021.
5. Chiasson J. M., Smith W. J., Jodlowski T. Z. et al. Impact of a rapid blood culture diagnostic panel on time to optimal antimicrobial therapy at a veterans affairs medical center // J Pharm Pract. – 2022. – Vol. 35, № 5. – P. 722–729. doi: 10.1177/08971900211000686.
6. Evans L., Rhodes A., Alhazzani W. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021 // Intensive Care Med. – 2021. – Vol. 47. – P. 1181–1247. doi: 10.1007/s00134-021-06506-y.
7. Kumar A., Haery C., Paladugu B. et al. The duration of hypotension before the initiation of antibiotic treatment is a critical determinant of survival in a murine model of Escherichia coli septic shock: association with serum lactate and inflammatory cytokine levels // J Infect Dis. – 2006. – Vol. 193. – P. 251–258. doi: 10.1086/498909.
8. McHugh M. P., Parcell B. J., MacKenzie F. M. et al. Virology Network Smvn Molecular Diagnostics Evaluation Group. 2020. Rapid molecular testing for Staphylococcus aureus bacteraemia improves clinical management // J Med Microbiol. – 2020. – Vol. 69. – P. 552–557. doi: 10.1099/jmm.0.001171.
9. Messacar K., Hurst A. L., Child J. et al. Clinical impact and provider acceptability of real-time antimicrobial stewardship decision support for rapid diagnostics in children with positive blood culture results // J Pediatric Infect Dis Soc. – 2017. – Vol. 6, № 3. – P. 267–74. doi: 10.1093/jpids/piw047
10. Nasef R., Lababidi R. E., Alatoom A. et al. The impact of integrating rapid pcr-based blood culture identification panel to an established antimicrobial stewardship program in the United Arab of Emirates // Int J Infect Dis. – 2020. – Vol. 91. – P. 124–128. doi: 10.1016/j.ijid.2019.11.028
11. Pantel A., Monier J., Lavigne J. P. Performance of the Accelerate Pheno system for identification and antimicrobial susceptibility testing of a panel of multidrug-resistant Gramnegative bacilli directly from positive blood cultures // J Antimicrob Chemother. – 2018. – Vol. 73. – P. 1546–1552. doi: 10.1093/jac/dky032.
12. Paul M., Carrara E., Retamar P. et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine) // Clinical Microbiology and Infection. – 2022. – Vol. 28, № 4. – P. 521–547. doi: 10.1016/j.cmi.2021.11.025
13. Payne M., Champagne S., Lowe C. et al. Evaluation of the filmarray blood culture identification panel compared to direct MALDI-TOF MS identification for rapid identification of pathogens // J Med Microbiol. – 2018. – Vol. 67, № 9. – P. 1253–1256. doi: 10.1099/jmm.0.000802.
14. Ray S. T. J., Drew R. J., Hardiman F., Pizer B., Riordan A. Rapid identification of microorganisms by FilmArray Blood Culture Identification Panel improves clinical management in children // Pediatric Infectious Disease Journal. – 2016. – Vol. 35, № 5. – P. e134–8. doi: 10.1097/INF.0000000000001065.
15. Rule R., Paruk F., Becker P. et al. Clinical utility of the BioFire FilmArray Blood Culture Identification panel in the adjustment of empiric antimicrobial therapy in the critically ill septic patient // PLoS One. – 2021. – Vol. 16, № 7. – P. e0254389. doi: 10.1371/journal.pone.0254389.
16. Shah S., Davar N., Thakkar P. et al. Clinical utility of the FilmArray blood culture identification 2 panel in identification of microorganisms and resistance markers from positive blood culture bottles // Indian J Microbiol Res. – 2022. – Vol. 9, № 1. – P. 28–33. doi: 10.18231/j.ijmr.2022.005.
17. Sparks R., Balgahom R., Janto C. et al. Evaluation of the BioFire Blood Culture Identification 2 panel and impact on patient management and antimicrobial stewardship // Pathology. – 2021. – Vol. 53, № 7. – P. 889–895. doi: 10.1016/j.pathol.2021.02.016.
18. Tamma P. D., Aitken S. L., Bonomo R. A. et al. IDSA Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections: Version 1.0. (Epub.), Available: https://www.idsociety.org/practice-guideline/amr-guidance/ ( Accessed 15. 03. 2023).
19. Tamma P. D., Aitken S. L., Bonomo R. A. et al. IDSA Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections: Version 2.0. (Epub.), Available: URL: https://www.idsociety.org/practice-guideline/amr-guidance-2.0/ Acces sed 15. 03. 2023).
20. Timbrook T. T., Caffrey A. R., Ovalle A. et al. LaPlante KL. Assessments of opportunities to improve antibiotic prescribing in an emergency department: a period prevalence survey // Infect Dis Ther. – 2017. – Vol. 6. – P. 497–505. doi: 10.1007/s40121-017-0175-9.
21. Verroken A., Despas N., Rodriguez-Villalobos H. et al. The impact of a rapid molecular identification test on positive blood cultures from critically ill with bacteremia: a pre-post intervention study // PLoS One. – 2019. – Vol. 14, № 9. – P. e0223122. doi: 10.1371/journal.pone.0223122.
Review
For citations:
Dekhnich А.V., Kuzmenkov A.Yu., Popov D.A., Shlyk I.V., Edelshtein M.V. Algorithm for the selection of drugs for targeted antimicrobial therapy based on the results of molecular biological studies of positive blood cultures. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2023;20(2):96-107. (In Russ.) https://doi.org/10.24884/2078-5658-2022-20-2-96-107