Preview

Messenger of ANESTHESIOLOGY AND RESUSCITATION

Advanced search

INTERACTION OF ENDOTHELIAL GLYCOCALYX WITH HEMODYNAMIC AND METABOLIC RESPONSE IN PATIENTS WITH SEPTIC SHOCK AND IN CARDIOSURGICAL INTERVENTIONS USING CARDIOPULMONARY BYPASS

https://doi.org/10.21292/2078-5658-2018-15-6-10-19

Abstract

The endothelial glycocalyx (EG) system is an important protective regulator of vascular integrity and permeability, provides cellular interaction and serves as a component of hemostasis. Damage of EG in septic shock, cardiopulmonary bypass (CPB), trauma, ischemia and in a number of other critical states leads to capillary leakage, hemodynamic and metabolic disorders.

The aim of the study was to evaluate the interaction of EG components with hemodynamic and metabolic response in patients with septic shock and in cardiosurgical interventions using CPB.

Materials and methods. The study included 21 patients with septic shock and 26 patients undergoing cardiac surgery with CPB. The plasma concentrations of EG components, including heparin-sulfate proteoglycan (HSPG) and syndecan 1 (S1), were determined in the group of patients with septic shock at baseline, 2 and 24 hours after the fluid load test, and in the group of cardiosurgical patients – after induction of anesthesia, at 6 and 24 hours after the end of CPB.

Results. In septic shock, the concentration of S1 in blood plasma tended to increase at 2 hours after the fluid load test. In cardiosurgical patients, at 6 hours after the end of CPB, the plasma concentration of HSPG reduced from 6.13 (4.20–9.04) to 5.08 (4.18–7.21) ng/ml (p <0.01), whereas S1 increased from 0.80 (0.56–1.13) to 1.25 (1.04–1.41) ng/ml (p <0.001). At 24 hours, HSPG and S1 returned to values close to baseline. In both groups, we established the relationship of the EG components with the parameters of pre- and afterload, as well as with the concentration of lactate.

Conclusion. The damage of EG in septic shock and in cardiosurgical interventions using CPB is related with disorders of hemodynamics and metabolism.

About the Authors

Ya. Yu. Ilyina
Northern State Medical University; E. E. Volosevich First Municipal Clinical Hospital
Russian Federation

Yana Yu. Ilyina - Post Graduate Student of Anesthesiology and Intensive Care Department

51, Troitsky Ave., Arkhangelsk, 163000



E. V. Fot
Northern State Medical University; E. E. Volosevich First Municipal Clinical Hospital
Russian Federation

Evgeniya V. Fot - Candidate of Medical Sciences, Associate Professor of Anesthesiology and Intensive Care Department

51, Troitsky Ave., Arkhangelsk, 163000



N. N. Izotova
Northern State Medical University; E. E. Volosevich First Municipal Clinical Hospital
Russian Federation

Natalya N. Izotova - Resident of Anesthesiology and Intensive Care Department

51, Troitsky Ave., Arkhangelsk, 163000



A. A. Smetkin
Northern State Medical University; E. E. Volosevich First Municipal Clinical Hospital
Russian Federation

Aleksey A. Smetkin - Candidate of Medical Sciences, Associate Professor of Anesthesiology and Intensive Care Department

51, Troitsky Ave., Arkhangelsk, 163000



D. А. Volkov
Northern State Medical University
Russian Federation

Dmitry A. Volkov - Resident of Anesthesiology and Intensive Care Department

51, Troitsky Ave., Arkhangelsk, 163000



E. A. Yakovenko
Northern State Medical University
Russian Federation

Elvira A. Yakovenko - Resident of Anesthesiology and Intensive Care Department

51, Troitsky Ave., Arkhangelsk, 163000



T. V. Chernova
Severodvinsk Municipal Clinical Emergency Hospital no. 2
Russian Federation

Tatiana V. Chernova - Pathologist

49, Morskoy Ave., Severodvinsk, 164500



V. V. Kuzkov
Northern State Medical University; E. E. Volosevich First Municipal Clinical Hospital
Russian Federation

Vsevolod V. Kuzkov - Doctor of Medical Sciences, Professor of Anesthesiology and Intensive Care Department

51, Troitsky Ave., Arkhangelsk, 163000



M. Yu. Kirov
Northern State Medical University; E. E. Volosevich First Municipal Clinical Hospital
Russian Federation

Mikhail Yu. Kirov - Doctor of Medical Sciences, Professor, Head of Anesthesiology and Intensive Care Department

51, Troitsky Ave., Arkhangelsk, 163000



References

1. Gonchar I.V., Balashov S.А., Valiev I.А. et al. The role of endothelial glycocalyx in the mechanogenic regulation of the tonus of arterial vessels. Trudy Moskovskogo Fiziko-Khimicheskogo Instituta, 2017, no. 1, pp. 101-108. (In Russ.)

2. Maksimenko А.V. Endothelial glycocalyx is a major component of double protective layer of the vessel wall: the diagnostic indicator and therapeutic target. Kardiologicheskiy Vestnik, 2016, no. 11 (3), pp. 94-100. (In Russ.)

3. Adachi T., Fukushima T., Usami Y. et al. Binding of human xanthine oxidase to sulphated glycosaminoglycans on the endothelial-cell surface. Biochem J., 1993, vol. 289, pp. 523-527.

4. Aksu U., Bezemer R., Yavuz B. et al. Balanced vs. unbalanced crystalloid resuscitation in a near-fatal model of hemorrhagic shock and the effects on renal oxygenation, oxidative stress, and inflammation. Resuscitation, 2012, vol. 83, pp. 767-773.

5. Backer D., Creteur J., Dubois M.J. et al. The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit. Care Med., 2006, vol. 34, pp. 403-408.

6. Becker B.F., Chappell D., Bruegger D. et al. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res., 2010, vol. 87, pp. 300-310.

7. Becker M., Menger M.D., Lehr H.A. Heparin-released superoxide dismutase inhibits postischemic leukocyte adhesion to venular endothelium. Am. J. Physiol., 1994, vol. 267, pp. 925-930.

8. Bown M.J., Nicholson M.L., Bell P.R.F. et al. Cytokines and inflammatory pathways in the pathogenesis of multiple organ failure following abdominal aortic aneurysm repair. Eur. J. Vasc. Endovasc. Surg., 2001, vol. 22, pp. 485-495.

9. Bruce D.S. Heparin: Effects upon the glycocalyx and endothelial cells. J. Extra Corpor. Technol.,2017, vol. 49, pp. 192-197.

10. Bruegger D., Jacob M., Rehm M. et al. Atrial natriuretic peptide induces shedding of the endothelial glycocalyx in the coronary vascular bed of guinea pig hearts. Am. J. Physiol. Heart Circ. Physiol., 2005, vol. 289, pp. 1993-1999.

11. Bruegger D., Rehm M., Abicht J. et al. Shedding of the endothelial glycocalyx during cardiac surgery: On-pump versus off-pump coronary artery bypass graft surgery. J. Thorac. Cardiovasc. Surg., 2009, vol. 138, pp. 1445-1447.

12. Burke-Gaffney A., Evans T.W. Lest we forget the endothelial glycocalyx in sepsis. Crit. Care, 2012, vol. 16, pp. 121.

13. Cancel L.M., Ebong E.E., Mensah S. et al. Endothelial glycocalyx, apoptosis and inflammation in an atherosclerotic mouse model. Atherosclerosis, 2016, vol. 252, pp. 136-146.

14. Chappell D., Bruegger D., Potzel J. et al. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit. Care, 2014, vol. 18, pp. 538.

15. Chappell D., Jacob M., Hofmann-Kiefer K. et al. Hydrocortisone preserves the vascular barrier by protecting the endothelial glycocalyx. J. Vasc. Res., 2006, vol. 43, pp. 563-564.

16. Florian J.A., Kosky J.R., Ainslie K. et al. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ. Res., 2003, vol. 93, pp. 136-142.

17. Forbes J.M., Coughlan M.T., Cooper M.E. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 2008, vol. 57, pp. 1446-1454.

18. Frati-Munari A.C. Medical significance of endothelial glycocalyx. Arch. Cardiol. Mex., 2013, vol. 83, pp. 303-312.

19. Haywood-Watson R.J., Holcomb J.B., Gonzalez E.A. et al. Modulation of syndecan-1 shedding after hemorrhagic shock and resuscitation. PLoS One, 2011, vol. 6(8), pp. e23530.

20. Henrich M., Gruss M., Weigand M.A. Sepsis-induced degradation of endothelial glycocalyx. Sci. World J.,2010, vol. 10, pp. 917-923.

21. Huxley V.H., Scallan J. Lymphatic fluid: exchange mechanisms and regulation. J. Physiol., 2011, vol. 589, pp. 2935-2943.

22. Ikeda M., Matsumoto H., Ogura H. et al. Circulating syndecan-1 predicts the development of disseminated intravascular coagulation in patients with sepsis. J. Crit. Care, 2018, vol. 43, pp. 48-53.

23. Ince C. The rationale for microcirculatory-guided fluid therapy. Curr. Opin. in Crit. Care, 2014, vol. 20, pp. 301-308.

24. Jacob M., Saller T., Chappell D. et al. Physiological levels of A-, B- and C-type natriuretic peptide shed the endothelial glycocalyx and enhance vascular permeability. Basic. Res. Cardiol., 2013, vol. 108, pp. 347.

25. Johannes T., Mik E.G., Nohé B. et al. Influence of fluid resuscitation on renal microvascular PO2 in a normotensive rat model of endotoxemia. Crit. Care, 2006, vol. 10, pp. 1-13.

26. Johansson P.I., Henriksen H.H., Stensballe J. et al. Traumatic endotheliopathy: a prospective observational study of 424 severely injured patients. Ann. Surg., 2017, vol. 265(3), pp. 597-603.

27. Johansson P., Stensballe J., Ostrowski S. Shock induced endotheliopathy (SHINE) in acute critical illness ‒ a unifying pathophysiologic mechanism. Crit. Care, 2017, vol. 21, pp. 25.

28. Johansson P.I., Sørensen A.M., Perner A. et al. Disseminated intravascular coagulation or acute coagulopathy of trauma shock early after trauma? An observational study. Crit. Care, 2011, vol. 15, pp. R272.

29. Johansson P.I., Stensballe J., Rasmussen L.S. et al. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann. Surg., 2011, vol. 254, pp. 194-200.

30. Kolářová H., Ambrůzová B., Svihálková L. et al. Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediators Inflamm., 2014, ID 694312.

31. Kozar R.A., Peng Z., Zhang R. et al. Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock. Anesth. Analg., 2011, vol. 112, pp. 1289-1295.

32. Kurzelewski M., Czarnowska E., Beresewicz A. Superoxide- and nitric oxide-derived species mediate endothelial dysfunction, endothelial glycocalyx disruption, and enhanced neutrophil adhesion in the post-ischemic guinea pig heart. J. Physiol. Pharmacol., 2005, vol. 56, pp. 163-178.

33. Miranda C.H., de Carvalho Borges M., Schmidt A. et al. Evaluation of the endothelial glycocalyx damage in patients with acute coronary syndrome. Atherosclerosis, 2016, vol. 247, pp. 184-188.

34. Muliwor A.W., Lipowsky H.H. Inflammation- and ischemia-induced shedding of venular glycocalyx. Am. J. Physiol. Heart Circ. Physiol., 2004, vol. 286, pp. 1672-1680.

35. Myburgh J.A., Mythen M.G. Resuscitation fluids. N. Engl. J. Med., 2013, vol. 369, pp. 1243-1251.

36. Nieuwdorp M., Mooij H.L., Kroon J. et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes, 2006, vol. 55, pp. 1127-1132.

37. Ospina-Tascon G., Neves A.P., Occhipinti G. et al. Effects of fluids on microvascular perfusion in patients with severe sepsis. Inten. Care Med., 2010, vol. 36, pp. 949-955.

38. Ostrowski S.R., Henriksen H.H., Stensballe J. et al. Sympathoadrenal activation and endotheliopathy are drivers of hypocoagulability and hyperfibrinolysis in trauma: A prospective observational study of 404 severely injured patients. J. Trauma Acute Care Surg., 2017, vol. 82, pp. 293-301.

39. Ostrowski S.R., Johansson P.I. Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J. Trauma Acute Care Surg., 2012, vol. 73, pp. 60-66.

40. Ostrowski S.R., Sorensen A.M., Larsen C.F. et al. Thrombelastography and biomarker profiles in acute coagulopathy of trauma: a prospective study. Scand. J. Trauma Resusc. Emerg. Med., 2011, vol. 19, pp. 64.

41. Padberg J.S., Wiesinger A., di Marco G.S. et al. Damage of the endothelial glycocalyx in chronic kidney disease. Atherosclerosis, 2014, vol. 234, pp. 335-343.

42. Pahakis M.Y., Kosky J.R., Dull R.O. et al. The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem. Biophys. Res. Commun., 2007, vol. 355, pp. 228-233.

43. Paparella D., Yau T.M., Young E. Cardiopulmonary bypass induced inflammation: pathophysiology and treatment: an update. Eur. J. Cardiothorac. Surg., 2002, vol. 21, pp. 232-244.

44. Platts S.H., Linden J., Duling B.R. Rapid modification of the glycocalyx caused by ischemia-reperfusion is inhibited by adenosine A2A receptor activation. Am. J. Physiol. Heart Circ. Physiol., 2003, vol. 284, pp. 2360-2367.

45. Rehm M., Bruegger D., Christ F. et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation, 2007, vol. 116, pp. 1896-1906.

46. Rhodes A., Laura E., Evans L.E. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intens. Care Med., 2017, vol. 43, pp. 304-377.

47. Rubio-Gayosso I., Platts S.H., Duling B.R. Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol., 2006, vol. 290, pp. 2247-2256.

48. Salmon A.H., Satchell S.C. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J. Pathol., 2012, vol. 226, pp. 562-574.

49. Singh A., Ramnath R.D., Foster R.R. et al. Reactive oxygen species modulate the barrier function of the human glomerular endothelial glycocalyx. PLoS One, 2013, vol. 8 (1), pp. e55852.

50. Stehouwer C.D., Smulders Y.M. Microalbuminuria and risk for cardiovascular disease: analysis of potential mechanisms. J. Am. Soc. Nephrol., 2006, vol. 17, pp. 2106-2111.

51. Steppan J., Hofer S., Funke B. et al. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalyx. J. Surg. Res., 2011, vol. 165, pp. 136-141.

52. Tarbell J.M., Pahakis M.Y. Mechanotransduction and the glycocalyx. J. Intern. Med., 2006, vol. 259, pp. 339-350.

53. Volta C. A., Alvisi V., Campi M. et al. Influence of different strategies of volume replacement on the activity of matrix metalloproteinases: an in vitro and in vivo study. Anesthesiology, 2007, vol. 106, pp. 85-91.

54. Wang L., Fuster M., Sriramarao P. et al. Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat. Immunol., 2005, vol. 6, pp. 902-910.

55. Woodcock T.E., Woodcock T.M. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br. J. Anaesth.,2012, vol. 108, pp. 384-394.

56. Wu X., Hu Z., Yuan H. et al. Fluid resuscitation and markers of glycocalyx degradation in severe sepsis. Open Med., 2017, vol. 12, pp. 409-416.


Review

For citations:


Ilyina Ya.Yu., Fot E.V., Izotova N.N., Smetkin A.A., Volkov D.А., Yakovenko E.A., Chernova T.V., Kuzkov V.V., Kirov M.Yu. INTERACTION OF ENDOTHELIAL GLYCOCALYX WITH HEMODYNAMIC AND METABOLIC RESPONSE IN PATIENTS WITH SEPTIC SHOCK AND IN CARDIOSURGICAL INTERVENTIONS USING CARDIOPULMONARY BYPASS. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2018;15(6):10-19. (In Russ.) https://doi.org/10.21292/2078-5658-2018-15-6-10-19



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)