Preview

Messenger of ANESTHESIOLOGY AND RESUSCITATION

Advanced search

CLINICAL PATHOPHYSIOLOGY OF CEREBRAL EDEMA (part 1)

https://doi.org/10.21292/2078-5658-2017-14-3-44-50

Abstract

The brain tissue manifests high metabolic activity and its damage results in disorders in oxygen and nutrients supply, accompanied by a severe life-threatening condition, i.e. cerebral edema. There are several stages of cerebral edema and each stage has unique pathogenic mechanisms. At the stage of cytotoxic edema, the fluid is redistributed into intracellular compartment. Ionic edema is characterized by functional disorder of blood-brain barrier with redistribution of fluid into interstitium. Stages of vasogenic edema and hemorrhagic conversion are manifested through anatomic lesions of blood-brain barrier. Traditional management of cerebral edema such as use of diuretic agents, hyperosmolar solutions, hyperventilation, decompressive craniotomy proved to be ineffective. Current data on pathophysiology of cerebral edema can promote discovering new promising treatment methods.

 

About the Authors

A. A. Zadvornov
Regional Pediatric Clinical Hospital, Kemerovo
Russian Federation
Anesthesiologist and Emergency Physician


A. V. Golomidov
Regional Pediatric Clinical Hospital, Kemerovo
Russian Federation
Candidate of Medical Sciences, Head of Anesthesiology and Intensive Care Department for Newborns


E. V. Grigoriev
Kuzbass Cardiology Center, Kemerovo
Russian Federation
Doctor of Medical Sciences, Professor, Deputy Director for Research and Therapy


References

1. Korzhevskiy D.E., Sukhorukova E.G., Kirik O.V., Аlekseeva O.S. Astrocytes of subventricular area of telencephalon. Morphologiya, 2011, vol. 139, no. 3, pp. 77-79. (In Russ.)

2. Badaut J., Fukuda A.M., Jullienne A., Petry K.G. Aquaporin and brain diseases. Biochim. Biophys. Acta., 2014, vol. 1840, no. 5, pp. 1554-1565.

3. Brinker T., Stopa E., Morrison J., Klinge P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS, 2014, vol. 11, pp. 10

4. Chen H., Luo J., Kintner D.B., Shull G.E., Sun D. Na+-dependent chloride transporter (NKCC1)-null mice exhibit less gray and white matter damage after focal cerebral ischemia. J. Cereb. Blood Flow Metab., 2005, vol. 25, no. 1, pp. 54-66.

5. Chen H., Sun D. The role of Na-K-Cl co-transporter in cerebral ischemia. Neurol Res., 2005, vol. 27, no. 3, pp. 280-286.

6. Ferrazzano P., Shi Y., Manhas N., Wang Y., Hutchinson B., Chen X., Chanana V., Gerdts J., Meyerand M.E., Sun D. Inhibiting the Na+/H+ exchanger reduces reperfusion injury: a small animal MRI study. Front Biosci (Elite Ed), 2011, vol. 3, pp. 81-88.

7. Hirt L., Price M., Ternon B., Mastour N., Brunet J.F., Badaut J. Early induction of AQP4 contributes the limitation of the edema formation in the brain ischemia. J. Cereb. Blood Flow Metab., 2009, vol. 29, pp. 423-433.

8. Hladky S.B., Barrand M.A. Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS, 2016, vol. 13, no. 1, pp. 19.

9. Jessen N.A., Munk A.S., Lundgaard I., Nedergaard M. The glymphatic system: a beginner's guide. Neurochem Res., 2015, vol. 40, no. 12, pp. 2583-2599.

10. Muoio V., Persson P.B., Sendeski M.M. The neurovascular unit – concept review. Acta Physiol (Oxf), 2014, vol. 210, no. 4, pp. 790-798.

11. O'Donnell M.E., Tran L., Lam T.I., Liu X.B., Anderson S.E. Bumetanide inhibition of the blood-brain barrier Na-K-Cl cotransporter reduces edema formation in the rat middle cerebral artery occlusion model of stroke. J. Cereb. Blood Flow Metab., 2004, vol. 24, no. 9, pp. 1046 -1056.

12. Preston G.M., Agre P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc. Natl. Acad. Sci., USA, 1991, vol. 88, pp. 11110-11114.

13. Rao K.V., Reddy P.V., Curtis K.M., Norenberg M.D. Aquaporin-4 expression in cultured astrocytes after fluid percussion injury. J. Neurotrauma, 2011, vol. 28, no. 3, pp. 371-381.

14. Redzic Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids. Barriers CNS, 2011, vol. 8, no. 1, pp. 3.

15. Ren Z., Iliff J.J., Yang L., Yang J., Chen X., Chen M.J., Giese R.N., Wang B., Shi X., Nedergaard M. «Hit & Run» model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J. Cereb. Blood Flow Metab., 2013, vol. 33, pp. 834-845.

16. Roales-Buján R., Páez P., Guerra M., Rodríguez S., Vío K., Ho-Plagaro A., García-Bonilla M., Rodríguez-Pérez L.M., Domínguez-Pinos M.D., Rodríguez E.M., Pérez-Fígares J.M., Jiménez A.J. Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus. Acta Neuropathol., 2012, vol. 124, no. 4, pp. 531-546.

17. Ross S.B., Fuller C.M., Bubien J.K., Benos D.J. Amiloride-sensitive Na+ channels contribute to regulatory volume increases in human glioma cells. Am. J. Physiol. Cell Physiol., 2007, vol. 293, no. 3, pp. 1181-1185.

18. Sa-Pereira I., Brites D., Brito M.A. Neurovascular unit: a focus on pericytes. Mol. Neurobiol., 2012, vol. 45, pp. 327-347.

19. Smith A.J., Jin B.J., Verkman A.S. Muddying the water in brain edema? Trends Neurosci., 2015, vol. 38, pp. 331-332.

20. Stokum J.A., Gerzanich V., Simard J.M. Molecular pathophysiology of cerebral edema. J. Cereb. Blood Flow Metab., 2016, vol. 36, no. 33, pp. 513-538.

21. Stokum J.A., Kurland D.B., Gerzanich V., Simard J.M. Mechanisms of astrocyte-mediated cerebral edema. Neurochem Res., 2015, vol. 40, no. 2, pp. 317-328.

22. Su G., Kintner D.B., Flagella M., Shull G.E., Sun D. Astrocytes from Na+-K+-Cl- cotransporter-null mice exhibit absence of swelling and decrease in EAA release. Am. J. Physiol. Cell Physiol., 2002, vol. 282, no. 5, pp. 1147-1160.

23. Suzuki Y., Matsumoto Y., Ikeda Y., Kondo K., Ohashi N., Umemura K. SM-20220, a Na+/H+ exchanger inhibitor: effects on ischemic brain damage through edema and neutrophil accumulation in a rat middle cerebral artery occlusion model. Brain. Res., 2002, vol. 945, no. 2, pp. 242-248.

24. Syková E., Nicholson C. Diffusion in brain extracellular space. Physiol. Rev., 2008, vol. 88, no. 4, pp. 1277-1340.

25. Takagi S., Ehara K., Finn R.D. Water extraction fraction and permeability-surface product after intravenous injection in rats. Stroke, 1987, vol. 18, no. 1, pp. 177-183.

26. Tao-Cheng J.H., Brightman M.W. Development of membrane interactions between brain endothelial cells and astrocytes in vitro. Int. J. Dev. Neurosci., 1988, vol. 6, no. 1, pp. 25-37.

27. Yan Y., Dempsey R.J., Flemmer A., Forbush B., Sun D. Inhibition of Na+-K+-Cl- cotransporter during focal cerebral ischemia decreases edema and neuronal damage. Brain Res., 2003, vol. 961, no. 1, pp. 22-31.


Review

For citations:


Zadvornov A.A., Golomidov A.V., Grigoriev E.V. CLINICAL PATHOPHYSIOLOGY OF CEREBRAL EDEMA (part 1). Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2017;14(3):44-50. (In Russ.) https://doi.org/10.21292/2078-5658-2017-14-3-44-50



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)