Preview

Messenger of ANESTHESIOLOGY AND RESUSCITATION

Advanced search

Possibilities of application of Raman spectroscopy in phenotyping of patients with sepsis (literature review)

https://doi.org/10.24884/2078-5658-2025-22-6-138-146

Abstract

Introduction. Sepsis remains one of the leading causes of mortality in intensive care units. The heterogeneity of the population of these patients determines the need to search for new technologies for stratification of its severity. One of these methods is Raman spectroscopy, which allows to perform molecular analysis of biological fluids without lengthy sample preparation.

The objective was to analyze the possibilities of using Raman spectroscopy for phenotyping of patients with sepsis.

Materials and methods. A review of current studies in which Raman spectroscopy has been used to identify biomarkers of inflammation, bacterial pathogens, and to assess the immune response in patients with suspected sepsis.

Results. It is noted that the Raman spectroscopy technology demonstrates high sensitivity and specificity in the diagnosis of infectious processes, including the determination of antibiotic sensitivity and real-time monitoring of treatment. The main limitations of the method remain the high cost of equipment and the need for qualified personnel.

Conclusion. The development of portable systems and algorithms for automatic spectral processing contributes to the expansion of the clinical application of Raman spectroscopy.

About the Authors

A. R. Shakirov
Bashkir State Medical University
Russian Federation

Shakirov Albert R., Assistant of the Department of Anesthesiology and Intensive Care

3, Lenin str., Russia, 450077



I. N. Kurochkin
Emanuel Institute of Biochemical Physics of Russian Academy of Sciences
Russian Federation

Kurochkin Ilya N., Dr. of Sci. (Chem.), Professor, Director 

4, Kosygina str., Russia, 119334



P. I. Mironov
Bashkir State Medical University
Russian Federation

Mironov Pyotr I., Dr. of Sci. (Med.), Professor, Professor of the Department of Anesthesiology and Intensive Care

3, Lenin str., Russia, 450077



I. I. Lutfarakhmanov
Bashkir State Medical University
Russian Federation

Lutfarakhmanov Ildar I., Dr. of Sci. (Med.), Professor, Head of the Department of Anesthesiology and Intensive Care

3, Lenin str., Russia, 450077



V. N. Pavlov
Bashkir State Medical University
Russian Federation

Pavlov Valentin N., Academician of the Russian Academy of Sciences, Dr. of Sci. (Med.), Professor, Rector

3, Lenin str., Russia, 450077



References

1. Vershinina M. G. Diagnosis of sepsis based on microbiological, molecular-genetic, and immunochemical studies: diss. … Dr. of Sci. (Med.). Russian University of Peoples’ Friendship. 2023 https://www.dissercat.com/content/sravnitelnaya-kharakteristika-biomarkerov-infektsii-u-patsientov-v-otdeleniyakh-reanimatsii (accessed: 20.11.25). (In Russ.).

2. Kosova A. A., Chalapa V. I. Infections associated with giving medical care in hospitals Russia: experience of meta-analysis of morbidity. Public Health and Life Environment – PH&LE, 2018, vol. 12, pp. 57–64. (In Russ.). https://doi.org/10.35627/2209-5238/2018-309-12-57-63.

3. Yushina A. A., Aseev V. A., Levin A. D. Development of measures for metrological support of Raman spectroscopy. Measurement Standards. Reference Materials, 2023, vol. 19, no. 1, pp. 51–64. (In Russ.). https://doi.org/10.20915/2077-1177-2023-19-1-51-64.

4. Arend N., Pittner A., Ramoji A. et al. Detection and differentiation of bacterial and fungal infection of neutrophils from peripheral blood using Raman spectroscopy. Analytical Chemistry, 2020, vol. 92, no. 15, pp. 10560–10568. https://doi.org/10.1021/acs.analchem.0c01384.

5. Bellon Pizarro K. N., Rolando J. C., Maron J. L. et al. Ultrasensitive detection of six sepsis-associated proteins in neonatal saliva. Biosensing, 2025, vol. 2, pp. 3. https://doi.org/10.1038/s44328-025-00026-1.

6. Chakradhar A., Baron R. M., Vera M. P. et al. Plasma renin as a novel prognostic biomarker of sepsis-associated acute respiratory distress syndrome. Sci Rep, 2024, vol. 14, pp. 6667. https://doi.org/10.1038/s41598-024-56994-3.

7. Chen W., Qiu M., Paizs P. et al. Universal, untargeted detection of bacteria in tissues using metabolomics workflows. Nat Commun, 2025, vol. 16, pp. 165. https://doi.org/10.1038/s41467-024-55457-7.

8. De Plano L., Fazio E., Rizzo M. et al. Phage-based assay for rapid detection of bacterial pathogens in blood by Raman spectroscopy. J Immunol Methods, 2019, vol. 465, pp. 45–52. https://doi.org/10.1016/j.jim.2018.12.004.

9. Eberhardt K., Stiebing C., Matthäus C. et al. Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update. Expert Rev Mol Diagn, 2015, vol. 15, pp. 773–787. https://doi.org/10.1586/14737159.2015.1036744.

10. Ghosh S. Quantum dot based aptasensors for the detection of biomolecules with related Raman/SERS spectral analysis. Thesis. University of Illinois Chicago, 2019. https://doi.org/10.25417/uic.12481091.v1.

11. Haddock N. L., Barkal L. J., Ram-Mohan N. et al. Phage diversity in cell-free DNA identifies bacterial pathogens in human sepsis cases. Nat Microbiol, 2023, vol. 8, pp. 1495–1507. https://doi.org/10.1038/s41564-023-01406-x.

12. Huang J., Zhang D., Zu Y. et al. Procalcitonin detection using immunomagnetic beads-mediated surface-enhanced Raman spectroscopy. Biosensors, 2024, vol. 14, no. 4, pp. 164. https://doi.org/10.3390/bios14040164.

13. Kayambankadzanja R., Schell C., Namboya F. et al. The prevalence and outcomes of sepsis in adult patients in two hospitals in Malawi. Am J Trop Med Hyg, 2020, vol. 102, no. 4, pp. 896–901. https://doi.org/10.4269/ajtmh.19-0320.

14. Kim T. H., Kang J., Jang H. et al. Blood culture-free ultra-rapid antimicrobial susceptibility testing. Nature, 2024, vol. 632, pp. 893–902. https://doi.org/10.1038/s41586-024-07725-1.

15. Klein Klouwenberg P. M., Cremer O. L., van Vught L. A. et al. Likelihood of infection in patients with presumed sepsis at the time of intensive care unit admission: a cohort study. Crit Care, 2015, vol. 19, no. 1, pp. 319. https://doi.org/10.1186/s13054-015-1035-1.

16. Koch B. J., Park D. E., Hungate B. A. et al. Predicting sepsis mortality into an era of pandrug-resistant E. coli through modeling. Commun Med, 2024, vol. 4, pp. 278. https://doi.org/10.1038/s43856-024-00693-7.

17. Kundu A., Rani R., Ahmad A. et al. Ultrasensitive and label-free detection of prognostic and diagnostic biomarkers of sepsis on a AgNP-laden black phosphorous-based SERS platform. Sensors & Diagnostics, 2022, vol. 1, no. 4, pp. 449–459. https://doi.org/10.1039/d1sd00057h.

18. Li B. R., Zhuo Y., Jiang Y. Y. et al. Random Forest differentiation of Escherichia coli in elderly sepsis using biomarkers and infectious sites. Sci Rep, 2024, vol. 14, pp. 12973. https://doi.org/10.1038/s41598-024-63944-6.

19. Liang F., Zheng M., Lu J. et al. Utilizing integrated bioinformatics and machine learning approaches to elucidate biomarkers linking sepsis to purine metabolism-associated genes. Sci Rep, 2025, vol. 15, pp. 353. https://doi.org/10.1038/s41598-024-82998-0.

20. Lin S. H., Fan J., Zhu J. et al. Exploring plasma metabolomic changes in sepsis: a clinical matching study based on gas chromatography-mass spectrometry. Ann Transl Med, 2020, vol. 8, no. 23, pp. 1568. https://doi.org/10.21037/atm-20-3562.

21. Lima C., Ahmed S., Xu Y. et al. Simultaneous Raman and infrared spectroscopy: a novel combination for studying bacterial infections at the single cell level. Chem Sci, 2022, vol. 13, pp. 8171–8179. https://doi.org/10.1039/d2sc02493d.

22. Lister A. P., Highmore C. J., Hanrahan N. et al. Multi-excitation Raman spectroscopy for label-free, strain-level characterization of bacterial pathogens in artificial sputum media. Analytical Chemistry, 2022, vol. 94, no. 2, pp. 669–677. https://doi.org/10.1021/acs.analchem.1c02501.

23. Lovergne L. Rapid pre-symptomatic diagnosis of sepsis by vibrational spectroscopy (Doctoral dissertation). University of Strathclyde, 2018. https://doi.org/10.48730/p5rq-e343.

24. Mu A., Klare W. P., Baines S. L. et al. Integrative omics identifies conserved and pathogen-specific responses of sepsis-causing bacteria. Nat Commun, 2023, vol. 14, pp. 1530. https://doi.org/10.1038/s41467-023-37200-w.

25. O’Toole H. J., Lowe N., Arun V. et al. Plasma-derived extracellular vehicles as biomarkers of sepsis in burn patients via label-free Raman spectroscopy. bioRxiv, 2024, 05.14.593634. https://doi.org/10.1101/2024.05.14.593634.

26. Osadare I. E., Xiong L., Rubio I. et al. Raman spectroscopy profiling of splenic T-cells in sepsis and endotoxemia in mice. Int J Mol Sci, 2023, vol. 24, no. 15, 12027. https://doi.org/10.3390/ijms241512027.

27. Paraskevaidi M., Matthew B., Holly B. et al. Clinical applications of infrared and Raman spectroscopy in the fields of cancer and infectious diseases. Appl Spectrosc Rev, 2021, vol. 56, pp. 804–868. https://doi.org/10.1080/05704928.2021.1946076.

28. Park S. The role of interleukin-6 in inflammatory diseases and the clinical implications of its modulation. J Inflamm Res, 2021, vol. 14, pp. 1–12. https://doi.org/10.2147/JIR.S315200.

29. Prescott H. C. The epidemiology of sepsis. Wersinga W. J., Seymour C. W., eds. Handbook of Sepsis. Cham: Springer International Publishing, 2018, pp. 15–28. https://doi.org/10.1007/978-3-319-73538-0_2.

30. Ramoji A., Thomas-Rüddel D., Ryabchykov O. et al. Leukocyte activation profile assessed by Raman spectroscopy helps diagnosing infection and sepsis. Crit Care Explor, 2021, vol. 3, no. 5, e0394. https://doi.org/10.1097/CCE.0000000000000394.

31. Seok H., Jeon J. H., Park D. W. Antimicrobial therapy and antimicrobial stewardship in sepsis. Infect Chemother, 2020, vol. 52, no. 1, pp. 19–30. https://doi.org/10.3947/ic.2020.52.1.19.

32. Shiferaw B. The role of procalcitonin as a biomarker in sepsis. J Infect Dis Epidemiol, 2016, vol. 2, pp. 006. https://doi.org/10.23937/2474-3658/1510006.

33. Siraj N., Bwambok D., Brady P. et al. Raman spectroscopy and multivariate regression analysis in biomedical research, medical diagnosis, and clinical analysis. Appl Spectrosc Rev, 2021, vol. 56, pp. 615–672. https://doi.org/10.1080/05704928.2021.1913744.

34. Verma T., Majumdar S., Yadav S. et al. Cell-free hemoglobin is a marker of systemic inflammation in mouse models of sepsis: A Raman spectroscopic study. Analyst, 2021, vol. 146, no. 12, pp. 4022–4032. https://doi.org/10.1039/d1an00066g.

35. Wang J., Niu R., Jiang L. et al. The diagnostic values of C-reactive protein and procalcitonin in identifying systemic lupus erythematosus infection and disease activity. Medicine, 2019, vol. 98, no. 33, e16798. https://doi.org/10.1097/MD.0000000000016798.

36. Wang X., Ma L., Sun S. et al. Rapid, highly sensitive and quantitative detection of interleukin 6 based on SERS magnetic immunoassay. Anal Methods, 2021, vol. 13, no. 15, pp. 1823–1831. https://doi.org/10.1039/d0ay02304c.

37. Wang Y., Fang L., Wang Y. et al. Current trends of Raman spectroscopy in clinic settings: opportunities and challenges. Adv Sci, 2023, vol. 11, no. 7, e2300668. https://doi.org/10.1002/advs.202300668.

38. Williams M., Bradshaw D., Andrews D. Raman scattering mediated by neighboring molecules. J Chem Phys, 2016, vol. 144, no. 17, pp. 174304. https://doi.org/10.1063/1.4948366.

39. Yi X., Song Y., Xu X. et al. Development of a fast Raman-assisted antibiotic susceptibility test (frast) for the antibiotic resistance analysis of clinical urine and blood samples. Anal Chem, 2021, vol. 93, no. 12, pp. 5098–5106. https://doi.org/10.1021/acs.analchem.0c04709.


Review

For citations:


Shakirov A.R., Kurochkin I.N., Mironov P.I., Lutfarakhmanov I.I., Pavlov V.N. Possibilities of application of Raman spectroscopy in phenotyping of patients with sepsis (literature review). Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2025;22(6):138-146. (In Russ.) https://doi.org/10.24884/2078-5658-2025-22-6-138-146



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)