Predicting the development of urosepsis: predictors, techniques, technologies
https://doi.org/10.24884/2078-5658-2025-22-6-107-116
Abstract
Introduction. The article presents an analysis of modern approaches to predicting urosepsis development, focusing on biomarker research and diagnostic methods. The study is relevant due to the high prevalence of urosepsis, which accounts for 31.4% of all clinical forms of sepsis.
The objective was to determine the diagnostic significance and systematization of biomarkers of urosepsis in acute purulent pyelonephritis, to identify existing contradictions for further study of this problem.
Materials and methods. A systematic literature review was conducted using the PRISMA for Scoping Reviews (PRISMA-ScR) methodology, searching PubMed, Cochrane Database of Systematic Reviews, and Google Scholar with keywords: «biomarkers» OR «cytokines» OR «gene expression» OR «interleukin-6» AND «sepsis» AND «systemic inflammatory response syndrome» AND «pyelonephritis» (last search: May 30, 2025), with inclusion criteria based on PICOD: (P - population) patients with urosepsis due to acute purulent pyelonephritis; (I - intervention) prediction of urosepsis development using biomarkers; (C - comparison) patients with uncomplicated acute purulent pyelonephritis; (O - outcomes) development of sepsis in acute purulent pyelonephritis; (D - study design) prospective/retrospective cohort studies, and exclusion criteria: insufficient relevant data or interesting results, duplicate publications, uncomplicated course of acute (or exacerbation of chronic) pyelonephritis, lack of full-text version, reviews and meta-analyses, with research quality analysis conducted using the Newcastle–Ottawa Scale (NOS).
Results. A total of 39 studies involving 38,021 patients were selected, with the majority receiving more than 6 points on the Newcastle–Ottawa Scale (NOS), indicating high-quality research, and during the systematization of the obtained data, biomarkers were categorized according to the degree of their implementation in clinical practice; in terms of functionality and mechanism of action.
Conclusion. The findings of the scoping review identified reliable predictors of urosepsis development and progression, which can significantly improve the quality of diagnosis and treatment.
About the Authors
K. A. ErshovaRussian Federation
Ershova Karina A., Anesthesiologist-Intensivist of the Department of Anesthesiology and Intensive Care Unit № 2 of the University Clinical Hospital № 1 named after S. R. Mirotvortsev (Clinical Center)
137, Bolshaya Sadovaya str., Saratov, 410054
N. V. Shindyapina
Russian Federation
Shindyapina Nataliya V., Cand. of Sci. (Med.), Associate Professor of the Department of Emergency Medicine, Anesthesiology and Intensive Care, and Simulation Technologies in Medicine
137, Bolshaya Sadovaya str., Saratov, 410054
A. V. Kuligin
Russian Federation
Kuligin Alexander V., Dr. of Sci. (Med.), Associate Professor, Head of the Department of Emergency Medicine, Anesthesiology and Intensive Care, and Simulation Technologies in Medicine, Chief External Specialist in Anesthesiology and Intensive Care Medicine of the Saratov Region
137, Bolshaya Sadovaya str., Saratov, 410054
References
1. Chernova Y. G. C., Neymark A. I. N., Momot A. P. M. The role of presepsin in the estimation of disease severity and assesment the treatment efficiency in patients purulent pyelonephritis. Urologiia, 2018, vol. 5, pp. 22–26. (In Russ.). http://doi.org/10.18565/urology.2018.5.22-26.
2. Al-lateef B. A., Al-shukri M. S. M., Judi M. R. Expression of circulatory interleukin-6 concentration associated with pseudomonas aeruginosa persistence in recurrent urinary tract infections. Medical Journal of Babylon, 2023, vol. 20, no. 1, pp. 201–205. http://doi.org/10.4103/mjbl.mjbl_343_22.
3. Al Rushood M., AL-Eisa A., AL-Attiyah R. Serum and urine interleukin-6 and interleukin-8 levels do not differentiate acute pyelonephritis from lower urinary tract infections in children. Journal of Inflammation Research, 2020, vol. 13, pp. 789–897. http://doi.org/10.2147/jir.s275570.
4. Ambaringrum S. L., Hernaningsih Y., Kusuma E. et al. Cut-off value of procalcitonin in sepsis and septic shock patients at dr. soetomo hospital. Indonesian journal of clinical pathology and medical laboratory, 2022, vol. 28, no. 2, pp. 179–184. http://doi.org/10.24293/ijcpml.v28i2.1827.
5. Ambite I., Chao S. M., Rosenblad T. et al. Molecular analysis of acute pyelonephritis – excessive innate and attenuated adaptive immunity. Life Science Alliance, 2024, vol. 8, no. 3, e202402926. http://doi.org/10.26508/lsa.202402926.
6. Anand D., Das S., Bhargava S. et al. Procalcitonin as a rapid diagnostic biomarker to differentiate between culture-negative bacterial sepsis and systemic inflammatory response syndrome: A prospective, observational, cohort study. Journal of Critical Care. 2015, vol. 30, no. 1, vol. 218, e7-218.e12. http://doi.org/10.1016/j.jcrc.2014.08.017.
7. Angelova S., Salim A., Kiselova-Kaneva Y. et al. Association of mRNA Levels of IL6, MMP-8, GSS in saliva and pyelonephritis in children. Molecules, 2019, vol. 25, no. 1, pp. 85. http://doi.org/10.3390/molecules25010085
8. Claessens Y. E., Schmidt J., Batard E. et al. Can C-reactive protein, procalcitonin and mid-regional pro-atrial natriuretic peptide measurements guide choice of in-patient or out-patient care in acute pyelonephritis? Biomarkers In Sepsis (BIS) multicentre study. Clinical Microbiology and Infection, 2010, vol. 16, no. 6, pp. 753–760. http://doi.org/10.1111/j.1469-0691.2009.02955.x.
9. Claessens Y. E., Trabattoni E., Grabar S. et al. Plasmatic presepsin (sCD14-ST) concentrations in acute pyelonephritis in adult patients. Clinica Chimica Acta, 2017, vol. 464, pp. 182–188. http://doi.org/10.1016/j.cca.2016.11.036.
10. Darogha S. N., Azeez S. H., Abdullah Z. G. Evaluation of procalcitonin and interleukin-6 as a marker of bacterial urinary tract infection. Cellular and Molecular Biology, 2021, vol. 67, no. 4, pp. 203–213. http://doi.org/10.14715/cmb/2021.67.4.23.
11. DeBiasi R. L., Harahsheh A. S., Srinivasalu H. et al. Multisystem inflammatory syndrome of children: subphenotypes, risk factors, biomarkers, cytokine profiles, and viral sequencing. The Journal of Pediatrics, 2021, vol. 237, pp. 125–135. http://doi.org/10.1016/j.jpeds.2021.06.002.
12. Guinard-Barbier S., Grabar S., Chenevier-Gobeaux C. et al. Is mid-regional pro-atrial natriuretic peptide (MRproANP) an accurate marker of bacteremia in pyelonephritis? Biomarkers, 2011, vol. 16, no. 4, pp. 355–363. http://doi.org/10.3109/1354750x.2011.576769.
13. Gürgöze M. K., Akarsu S., Yilmaz E. et al. Proinflammatory cytokines and procalcitonin in children with acute pyelonephritis. Pediatric Nephrology, 2005, vol. 20, no. 10, pp. 1445–1448. http://doi.org/10.1007/s00467-005-1941-6.
14. Hang Z. Predictive value of procalcitonin for the therapeutic response of patients with uroseptic shock: a retrospective case-control study. American Journal of Translational Research, 2025, vol. 17, no. 2, pp. 992–1004. http://doi.org/10.62347/vfff7133.
15. Hernández J. G., Sundén F., Connolly J. et al. Genetic control of the variable innate immune response to asymptomatic bacteriuria. PLoS ONE, 2011, vol. 6, no. 11, e28289. http://doi.org/10.1371/journal.pone.0028289.
16. Holub M., Lawrence D. A., Andersen N. et al. Cytokines and chemokines as biomarkers of community-acquired bacterial infection. Mediators of Inflammation, 2013, pp. 1–7. http://doi.org/10.1155/2013/190145.
17. Lannergård A., Viberg A., Cars O. et al. The time course of body temperature, serum amyloid A protein, C-reactive protein and interleukin-6 in patients with bacterial infection during the initial 3 days of antibiotic therapy. Scandinavian Journal of Infectious Diseases, 2009, vol. 41, no. 9, pp. 663–671. http://doi.org/10.1080/00365540903127417.
18. Lee G. H., Lee Y. J., Kim Y. W. et al. A study of the effectiveness of using the serum procalcitonin level as a predictive test for bacteremia in acute pyelonephritis. Kosin Medical Journal, 2018, vol. 33, no. 3, pp. 337–346. http://doi.org/10.7180/kmj.2018.33.3.337.
19. Levine A. R., Tran M., Shepherd J. et al. Utility of initial procalcitonin values to predict urinary tract infection. The American Journal of Emergency Medicine, 2018, vol. 36, no. 11, pp. 1993–1997. http://doi.org/10.1016/j.ajem.2018.03.001.
20. Mazaheri M. Serum Interleukin-6 and Interleukin-8 are sensitive markers for early detection of pyelonephritis and its prevention to progression to chronic kidney disease. International Journal of Preventive Medicine, 2021, vol. 12, no. 1, pp. 2. http://doi.org/10.4103/ijpvm.ijpvm_50_19.
21. Mihaľova M., Supcíkova N., Kovalcikova A. G. et al. Dynamics of urinary extracellular DNA in urosepsis. Biomolecules, 2023, vol. 13, no. 6, pp. 1008. http://doi.org/10.3390/biom13061008
22. Min K., Kim B. S., Ha Y. S. et al. Predicting septic shock in obstructive pyelonephritis associated with ureteral stones: A retrospective study. Medicine, 2024, vol. 103, no. 31, e38950. http://doi.org/10.1097/md.0000000000038950
23. Nickavar A., Safaeian B., Valavi E. Evaluation and comparison of urinary cytokines for the diagnosis of acute pyelonephritis. Archives of Pediatric Infectious Diseases, 2016, vol. 4, no. 4, e38877. http://doi.org/10.5812/pedinfect.38877.
24. Nursanto T. F., Soebadi M. A., Soebadi D. M. Comparison of interleukin-6, procalcitonin and c-reactive protein as a diagnostic biomarker in patients urosepsis. Indonesian Journal of Urology, 2020, vol. 27, no. 2, pp. 122–127. http://doi.org/10.32421/juri.v27i2.516.
25. Qi T., Lai C., Li Y. et al. The predictive and diagnostic ability of IL-6 for postoperative urosepsis in patients undergoing percutaneous nephrolithotomy. Urolithiasis, 2021, vol. 49, no. 4, pp. 367–375. http://doi.org/10.1007/s00240-020-01237-z.
26. Ricaño-Ponce I., Riza A. L., de Nooijer A. H. et al. Characterization of sepsis inflammatory endotypes using circulatory proteins in patients with severe infection: a prospective cohort study. BMC Infectious Diseases, 2022, vol. 22, no. 1. http://doi.org/10.1186/s12879-022-07761-0.
27. Seo D. Y., Jo S., Lee J. B. et al. Diagnostic performance of initial serum lactate for predicting bacteremia in female patients with acute pyelonephritis. The American Journal of Emergency Medicine, 2016, vol. 34, no. 8, pp. 1359–1363. http://doi.org/10.1016/j.ajem.2016.03.062.
28. Shaikh N., Martin J. M., Hoberman A. et al. Biomarkers that differentiate false positive urinalyses from true urinary tract infection. Pediatric Nephrology, 2019, vol. 35, no. 2, pp. 321–329. http://doi.org/10.1007/s00467-019-04403-7.
29. Shen J., Pan L., Chen W. et al. Long non-coding RNAs MALAT1, NEAT1 and DSCR4 can be serum biomarkers in predicting urosepsis occurrence and reflect disease severity. Experimental and Therapeutic Medicine, 2024, vol. 28, no. 1, pp. 289. http://doi.org/10.3892/etm.2024.12578.
30. Su M., Guo J., Chen H. et al. Developing a machine learning prediction algorithm for early differentiation of urosepsis from urinary tract infection. Clinical Chemistry and Laboratory Medicine (CCLM), 2022, vol. 61, no. 3, pp. 521–529. http://doi.org/10.1515/cclm-2022-1006.
31. Tambo M., Taguchi S., Nakamura Y. et al. Presepsin and procalcitonin as predictors of sepsis based on the new Sepsis-3 definitions in obstructive acute pyelonephritis. BMC Urology, 2020, vol. 20, no. 1, pp. 1–7. http://doi.org/10.1186/s12894-020-00596-4.
32. Toldi J., Kelava L., Marton S. et al. Distinct patterns of serum and urine macrophage migration inhibitory factor kinetics predict death in sepsis: a prospective, observational clinical study. Scientific Reports, 2023, vol. 13, no. 1, pp. 588. http://doi.org/10.1038/s41598-023-27506-6.
33. Truong M. H., Ngo T. Q., Nguyen Q. T. et al. The value of hematological indices as predictors of septic shock in acute obstructive pyelonephritis. Biomedical Research and Therapy, 2024, vol. 11, no. 6, pp. 6488–6493. http://doi.org/10.15419/bmrat.v11i6.895.
34. Tsalkidou E. A., Roilides E., Gardikis S. et al. Lipopolysaccharide-binding protein: a potential marker of febrile urinary tract infection in childhood. Pediatric Nephrology, 2013, vol. 28, no. 7, pp. 1091–1097. http://doi.org/10.1007/s00467-013-2432-9.
35. Van der Starre W. E., van Nieuwkoop C., Thomson U. et al. Urinary proteins, vitamin d and genetic polymorphisms as risk factors for febrile urinary tract infection and relation with bacteremia: a case control study. PLOS ONE, 2015, vol. 10, no. 3, e0121302. http://doi.org/10.1371/journal.pone.0121302.
36. Woei-A-Jin F. J. S. H., van der Starre W. E., Tesselaar M. E. T. et al. Procoagulant tissue factor activity on microparticles is associated with disease severity and bacteremia in febrile urinary tract infections. Thrombosis Research, 2014, vol. 133, no. 5, pp. 799–803. http://doi.org/10.1016/j.thromres.2014.03.007.
37. Yamashita R., Izumi Y., Nakada K. et al. Utility of urinary presepsin in the diagnosis of pyelonephritis: a cross-sectional study. BMC Infectious Diseases, 2023, vol. 23, no. 1, pp. 365. http://doi.org/10.1186/s12879-023-08353-2.
38. Yang B., Zhong J., Yang Y. et al. Machine learning constructs a diagnostic prediction model for calculous pyonephrosis. Urolithiasis, 2024, vol. 52, no. 1, pp. 96. http://doi.org/10.1007/s00240-024-01587-y.
39. Zayed K. M. S., Abdelhakeem A. M., Gafar H. S. et al. Diagnostic value of platelet parameters versus interleukin-6 in children with urinary tract infection. Egyptian Pediatric Association Gazette, 2016, vol. 64, no. 3, pp. 142–148. http://doi.org/10.1016/j.epag.2016.04.002.
Review
For citations:
Ershova K.A., Shindyapina N.V., Kuligin A.V. Predicting the development of urosepsis: predictors, techniques, technologies. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2025;22(6):107-116. (In Russ.) https://doi.org/10.24884/2078-5658-2025-22-6-107-116




























