Neuroprotective effects of anesthetics in children (literature review)
https://doi.org/10.24884/2078-5658-2025-22-5-142-149
Abstract
Introduction. Due to the large number of features of the child’s brain, the problem of neuroprotection has a high degree of relevance. Recently, a lot of work has been accumulating that anesthetics, with various application schemes, can have neuroprotective activity.
The objective was to search for data on the presence of neuroprotective properties of anesthetics in children. Materials and methods. The search for literary sources was carried out on the scientific databases Scopus, PubMed and Elibrary by keywords: children, neurovascular unit, anesthetic, neuroprotection, organoprotection. Priority in the selection of sources was given to meta-analyses, systematic reviews, and randomized trials published for the period 2019–2025.
Results. Based on both experimental and clinical studies, we concluded that ketamine and propofol have neuroprotective effects when used in subanesthetic doses, as well as exmedetomidine at its anesthetic doses. Desflurane also has protective mechanisms for the brain.
Conclusion. The anesthetics we studied have proven themselves as neuroprotectors, which will ensure the protection of neurons and prevent neurotoxicity and cognitive impairment in the postoperative period; however, there are few clinical studies in children.
About the Authors
A. A. IvkinRussian Federation
Ivkin Artem A., Cand. of Sci. (Med.), Head of the Laboratory of Organ Protection in Children with Congenital Heart Defects of the Department of Heart and Vascular Surgery
6, Boulevard named after Academician L. S. Barbarash, Kemerovo, 650002
A. A. Grigoriev
Russian Federation
Grigoriev Evgeniy V., Dr. of Sci. (Med.), Professor of the RAS, Deputy Director for Scientific and Medical Work
6, Boulevard named after Academician L. S. Barbarash, Kemerovo, 650002
K. S. Pevneva
Russian Federation
Pevneva Ksenia S., Junior Research Fellow of the Laboratory of Organ Protection in Children with Congenital Heart Defects of the Department of Heart and Vascular Surgery
6, Boulevard named after Academician L. S. Barbarash, Kemerovo, 650002
References
1. Borisenko D. V., Ivkin A. A., Shukevich D. L. Modern methods of limiting the systemic inflammatory response in the correction of congenital heart defects in children under conditions of artificial circulation. Complex problems of cardiovascular diseases, 2021, vol. 10, no. 2, pp. 113–124. (In Russ.). https://doi.org/10.17802/2306-1278-2021-10-2-113-124.
2. Ivkin A. A., Grigoriev E. V. The role of hypothermia for cerebroprotection in surgical correction of congenital heart defects. Complex problems of cardiovascular diseases, 2023, vol. 12, no. 4, pp. 228–234. (In Russ.). https://doi.org/10.17802/2306-1278-2023-12-4-228-234.
3. Ivkin A. A., Grigoriev E. V., Balakhnin D. G., Sinitskaya A. V. Infusion of subanesthetic doses of ketamine in the postoperative period as a means of cerebroprotection in children with surgical correction of congenital heart defects: a prospective randomized trial. Bulletin of Intensive care named after A. I. Saltanov, 2024, no. 4, pp. 115–126. (In Russ.). https://doi.org/10.21320/1818-474X-2024-4-115-126.
4. Abdelhalim A. A., Alarfaj A. M. The effect of ketamine versus fentanyl on the incidence of emergence agitation after sevoflurane anesthesia in pediatric patients undergoing tonsillectomy with or without adenoidectomy. Saudi J Anaesth, 2013, vol. 7, no. 4, pp. 392–398. https://doi.org/10.4103/1658-354X.121047.
5. Abdallah B. M., Elshoeibi A. M., ElTantawi N. et al. Comparison of postoperative pain in children after maintenance anaesthesia with propofol or sevoflurane: a systematic review and meta-analysis. Br J Anaesth, 2024, vol. 133, no. 1, pp. 93–102. https://doi.org/10.1016/j.bja.2024.03.022.
6. Alanazi E. The Effectiveness of Ketamine compared to opioid analgesics for management of acute pain in children in the emergency department: systematic review. Am J Emerg Med, 2022, vol. 61, pp. 143–151. https://doi.org/10.1016/j.ajem.2022.08.004.
7. Bhutta A. T., Schmitz M. L., Swearingen C. et al. Ketamine as a neuroprotectant and anti-inflammatory agent in children undergoing surgery on cardiopulmonary bypass: a pilot randomized, double-blind, placebo-controlled trial. Pediatr Crit Care Med, 2012, vol. 13, no. 3, pp. 328–337. https://doi.org/10.1097/PCC.0b013e31822f18f9.
8. Cho I., Koo B. N., Kim S. Y. et al. Neuroprotective effect of dexmedetomidine against postoperative cognitive decline via nlrp3 inflammasome signaling pathway. Int J Mol Sci, 2022, vol. 23, no. 15, pp. 8806. https://doi.org/10.3390/ijms23158806.
9. Costi D., Cyna A. M., Ahmed S. et al. Effects of sevoflurane versus other general anaesthesia on emergence agitation in children. Cochrane Database Syst Rev, 2014, vol. 9, 007084. https://doi.org/10.1002/14651858.CD007084.pub2.
10. Dale O., Somogyi A. A., Li Y. et al. Does intraoperative ketamine attenuate inflammatory reactivity following surgery? A systematic review and meta-analysis. Anesth Analg, 2012, vol. 115, no. 4, pp. 934–943. https://doi.org/10.1213/ANE.0b013e3182662e30.
11. Dong P., Zhao J., Li N. et al. Sevoflurane exaggerates cognitive decline in a rat model of chronic intermittent hypoxia by aggravating microglia-mediated neuroinflammation via downregulation of PPAR-γ in the hippocampus. Behav Brain Res, 2018, vol. 347, pp. 325–331. https://doi.org/10.1016/j.bbr.2018.03.031.
12. Feeney A., Papakostas G. I. Pharmacotherapy: Ketamine and Esketamine. Psychiatr Clin North Am, 2023, vol. 46, no. 2, pp. 277–290. https://doi.org/10.1016/j.psc.2023.02.003.
13. Ferraris V. A., Ballert E. Q., Mahan A. The relationship between intraoperative blood transfusion and postoperative systemic inflammatory response syndrome. Am J Surg, 2013, vol. 205, no. 4, pp. 457–465. https://doi.org/10.1016/j.amjsurg.2012.07.042.
14. Gunn J. K., Beca J., Hunt R. W. et al. Perioperative risk factors for impaired neurodevelopment after cardiac surgery in early infancy. Arch Dis Child, 2016, vol. 101, no. 11, pp. 1010–1016. https://doi.org/10.1136/archdischild-2015-309449.
15. Guan S., Sun L., Wang X. et al. Propofol inhibits neuroinflammation and metabolic reprogramming in microglia in vitro and in vivo. Front Pharmacol, 2023, vol. 14, 1161810. https://doi.org/10.3389/fphar.2023.1161810.
16. Guerriero R. M., Giza C. C., Rotenberg A. Glutamate and GABA imbalance following traumatic brain injury. Curr Neurol Neurosci Rep, 2015, vol. 15, no. 5, pp. 27. https://doi.org/10.1007/s11910-015-0545-1.
17. Hagberg H., Mallard C., Ferriero D. M. et al. The role of inflammation in perinatal brain injury. Nat Rev Neurol, 2015, vol. 11, no. 4, pp. 192–208. https://doi.org/10.1038/nrneurol.2015.13.
18. Hansen T. G. Anesthesia-related neurotoxicity and the developing animal brain is not a significant problem in children. Paediatr Anaesth, 2015, vol. 25, no. 1, pp. 65–72. https://doi.org/10.1111/pan.12548.
19. Karam C., Zeeni C., Yazbeck-Karam V. et al. Respiratory adverse events after LMA mask removal in children: a randomized trial comparing propofol to sevoflurane. Anesth Analg, 2023, vol. 136, no. 1, pp. 25–33. https://doi.org/10.1213/ANE.0000000000005945.
20. Kim K. S., Jeon M. T., Kim E. S. et al. Activation of NMDA receptors in brain endothelial cells increases transcellular permeability. Fluids Barriers CNS, 2022, vol. 19, no. 1, pp. 70. https://doi.org/10.1186/s12987-022-00364-6.
21. Kurth C. D., Priestley M., Watzman H. M. et al. Desflurane confers neurologic protection for deep hypothermic circulatory arrest in newborn pigs. Anesthesiology, 2001, vol. 95, no. 4, pp. 959–964. https://doi.org/10.1097/00000542-200110000-00027.
22. Liamlahi R., Latal B. Neurodevelopmental outcome of children with congenital heart disease. Handb Clin Neurol, 2019, vol. 162, pp. 329–345. https://doi.org/10.1016/B978-0-444-64029-1.00016-3.
23. Lyu J., Zhou Y., Zhang M. et al. Neuroprotective effect of dexmedetomidine on cerebral ischemia-reperfusion injury in rats. Altern Ther Health Med, 2023, vol. 29, no. 6, pp. 164–169. PMID: 37235497.
24. Mihaljević S., Pavlović M., Reiner K. et al. Therapeutic mechanisms of ketamine. Psychiatr Danub, 2020, vol. 32, no. 3, pp. 325–333. https://doi.org/10.24869/psyd.2020.325.
25. Miyake T., Miyamoto Y., Nakamura N. Subanesthetic-dose propofol infusion for preventing emergence agitation in children: a retrospective observational study. J Anesth, 2023, vol. 37, no. 4, pp. 546–554. https://doi.org/10.1007/s00540-023-03201-8.
26. Mutch W., El-Gabalawy R. M., Graham M. R. Postoperative delirium, learning, and anesthetic neurotoxicity: some perspectives and directions. Front Neurol, 2018, vol. 9, pp. 177. https://doi.org/10.3389/fneur.2018.00177.
27. Peng X., Li C., Yu W. et al. Propofol attenuates hypoxia-induced inflammation in BV2 microglia by inhibiting oxidative stress and NF-κB/Hif-1α signaling. Biomed Res Int, 2020, vol. 2020, 8978704. https://doi.org/10.1155/2020/8978704.
28. Rapido F., Di Franco V., Tabolacci E. et al.The role of sevoflurane exposure on systemic inflammation and neuroinflammation: a systematic review and meta-analysis of in vivo and in vitro studies. Eur J Pharmacol, 2025, vol. 999, 177696. https://doi.org/10.1016/j.ejphar.2025.177696.
29. Ramos Ramos V., Mesa Suárez P., Santotoribio J. D. et al. Neuroprotective effect of sevoflurane in general anaesthesia. Med Clin (Barc), 2017, vol. 148, no. 4, pp. 158–160. https://doi.org/10.1016/j.medcli.2016.10.039.
30. Roytblat L., Talmor D., Rachinsky M. et al. Ketamine attenuates the interleukin-6 response after cardiopulmonary bypass. Anesth Analg, 1998, vol. 87, no. 2, pp. 266–271. https://doi.org/10.1097/00000539-199808000-00006.
31. Sperotto F., Giaretta I., Mondardini M. C. et al. Ketamine prolonged infusions in the pediatric intensive care unit: a tertiary-care single-center analysis. J Pediatr Pharmacol Ther, 2021, vol. 26, no. 1, pp. 73–80. https://doi.org/10.5863/1551-6776-26.1.73.
32. Stegeman R., Nijman M., Breur J. M. et al. CRUCIAL trial consortium. CeRebrUm and CardIac Protection with ALlopurinol in Neonates with Critical Congenital Heart Disease Requiring Cardiac Surgery with Cardiopulmonary Bypass (CRUCIAL): study protocol of a phase III, randomized, quadruple-blinded, placebo-controlled, Dutch multicenter trial. Trials, 2022, vol. 23, no. 1, pp. 174. https://doi.org/10.1186/s13063-022-06098-y.
33. Sun L. S., Li G., Miller T. L. K. et al. Association between a single general anesthesia exposure before age 36 months and neurocognitive outcomes in later childhood. JAMA, 2016, vol. 315, pp. 2312–2320. https://doi.org/10.1001/jama.2016.6967.
34. Wang W., Lu D., Shi Y. et al. Exploring the neuroprotective effects of lithium in ischemic stroke: a literature review. Int J Med Sci, 2024, vol. 21, no. 2, pp. 284–298. https://doi.org/10.7150/ijms.88195.
35. Warner D. O., Zaccariello M. J., Katusic S. K. et al. Neuropsychological and behavioral outcomes after exposure of young children to procedures requiring general anesthesia: the mayo anesthesia safety in kids (MASK) study. Anesthesiology, 2018, vol. 129, no. 1, pp. 89–105. https://doi.org/10.1097/ALN.0000000000002232.
36. Xu D., Sun X., Zhang Y. et al. Ketamine alleviates HMGB1-induced acute lung injury through TLR4 signaling pathway. Adv Clin Exp Med, 2020, vol. 29, no. 7, pp. 813–817. https://doi.org/10.17219/acem/121936.
37. Xu F., Li L., Yang Y. et al. Intraoperative dexmedetomidine improves the outcome of pediatric cardiac surgery: a one-year cohort study. Rev Cardiovasc Med, 2023, vol. 24, no. 10, pp. 289. https://doi.org/10.31083/j.rcm2410289.
38. Yang B., Liang G., Khojasteh S. et al. Comparison of neurodegeneration and cognitive impairment in neonatal mice exposed to propofol or isoflurane. PLoS One, 2014, vol. 9, no. 6, e99171. https://doi.org/10.1371/journal.pone.0099171.
39. Yang N. S., Zhong W. J., Sha H. X. et al. mtDNA-cGAS-STING axis-dependent NLRP3 inflammasome activation contributes to postoperative cognitive dysfunction induced by sevoflurane in mice. Int J Biol Sci, 2024, vol. 20, no. 5, pp. 1927–1946. https://doi.org/10.7150/ijbs.91543.
40. Yang Z. Y., Yuan C. X. IL-17A promotes the neuroinflammation and cognitive function in sevoflurane anesthetized aged rats via activation of NF-κB signaling pathway. BMC Anesthesiol, 2018, vol. 18, pp. 147. https://doi.org/10.1186/s12871-018-0607-4.
41. Zhang X., Li N., Lu L. et al. Pioglitazone prevents sevoflurane-induced neuroinflammation and cognitive decline in a rat model of chronic intermittent hypoxia by upregulating hippocampal PPAR-γ. Mol Med Rep, 2019, vol. 19, pp. 3815–3822. https://doi.org/10.3892/mmr.2019.10052.
42. Zhao Y., Qin F., Liu Y. et al. The safety of propofol versus sevoflurane for general anesthesia in children: a meta-analysis of randomized controlled trials. Front Surg, 2022, vol. 9, 924647. https://doi.org/10.3389/fsurg.2022.924647.
43. Zhu X., Yao Y., Guo M. et al. Sevoflurane increases intracellular calcium to induce mitochondrial injury and neuroapoptosis. Toxicol Lett, 2021, vol. 336, pp. 11–20. https://doi.org/10.1016/j.toxlet.2020.11.002.
44. Zhuang X., Fu L., Luo L. et al. The effect of perioperative dexmedetomidine on postoperative delirium in adult patients undergoing cardiac surgery with cardiopulmonary bypass: a systematic review and meta-analysis of randomized controlled trials. BMC Anesthesiol, 2024, vol. 24, no. 1, pp. 332. https://doi.org/10.1186/s12871-024-02715-2.
Review
For citations:
Ivkin A.A., Grigoriev A.A., Pevneva K.S. Neuroprotective effects of anesthetics in children (literature review). Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2025;22(5):142-149. (In Russ.) https://doi.org/10.24884/2078-5658-2025-22-5-142-149