Assessment of the renal functional reserve for predicting the development of cardiosurgically associated acute kidney injury (literature review)
https://doi.org/10.24884/2078-5658-2025-22-5-121-131
Abstract
Introduction. Acute kidney injury (AKI) is a common complication of cardiac surgery. Despite a variety of proposed nephroprotective strategies, clinical data on their effectiveness remain inconsistent, and current diagnostic methods often fail to detect subclinical renal dysfunction in a timely manner. Under these circumstances, renal functional reserve (RFR) has gained attention as a potential tool for early prediction and prevention of AKI.
The objective was to summarize current data on renal functional reserve, methods of its assessment and its clinical significance in the prediction and prevention of cardiac surgery associated AKI.
Materials and Methods. A literature review was conducted using scientific publications retrieved from PubMed, Scopus, Web of Science, and eLIBRARY databases, covering the period from 1983 to March 2025. Included were original research articles and reviews focused on the physiology of renal functional reserve (RFR), methods for its assessment, clinical applications, and nephroprotective potential. Only studies involving adult patient populations were considered.
Results. RFR reflects the kidneys’ ability to adapt to physiological stress by increasing the glomerular filtration rate. This section presents the mechanisms underlying RFR activation, methods of its assessment (including protein load and amino acid infusion), and clinical studies demonstrating the prognostic value of RFR and its potential use in nephroprotective strategies.
Conclusion. RFR is a promising biomarker for preoperative risk stratification and the development of individualized nephroprotection strategies in cardiac surgical patients.
About the Authors
T. Kh. KasimRussian Federation
Kasim Timur H., Assistant of the Department of Anesthesiology and Intensive Care of the N.V. Sklifosovsky Institute of Clinical Medicine
8, Trubeckaya str., Moscow, 119991
A. G. Yavorovsky
Russian Federation
Yavorovsky Andrey G., Dr. of Sci. (Med.), Professor, Head of the Department of Anesthesiology and Intensive Care of the N.V. Sklifosovsky Institute of Clinical Medicine
8, Trubeckaya str., Moscow, 119991
I. A. Mandel
Russian Federation
Mandel Irina A., Cand. of Sci. (Med.), Associate Professor of the Department of Anesthesiology and Intensive Care of the N.V. Sklifosovsky Institute of Clinical Medicine; Associate Professor of the Department of Anesthesiology and Intensive Care
8, Trubeckaya str., Moscow, 119991
28, Orekhovy Boulevard, Moscow
M. E. Politov
Russian Federation
Politov Mikhail E., Cand. of Sci. (Med.), Associate Professor of the Department of Anesthesiology and Intensive Care of the N.V. Sklifosovsky Institute of Clinical Medicine
8, Trubeckaya str., Moscow, 119991
P. V. Nogtev
Russian Federation
Nogtev Pavel V., Cand. of Sci. (Med.), Associate Professor of the Department of Anesthesiology and Intensive Care of the N.V. Sklifosovsky Institute of Clinical Medicine
8, Trubeckaya str., Moscow, 119991
E. Y. Khalikova
Russian Federation
Khalikova Elena Yu., Cand. of Sci. (Med.), Head of the Academic Department, Associate Professor of the Department of Anesthesiology and Intensive Care of the N.V. Sklifosovsky Institute of Clinical Medicine
8, Trubeckaya str., Moscow, 119991
E. L. Bulanova
Russian Federation
Bulanova Ekaterina L., Cand. of Sci. (Med.), Associate Professor of the Department of Anesthesiology and Intensive Care of the N.V. Sklifosovsky Institute of Clinical Medicine
8, Trubeckaya str., Moscow, 119991
M. A. Vyzhigina
Russian Federation
Vyzhigina Margarita A., Dr. of Sci. (Med.), Professor of the Department of Anesthesiology and Intensive Care of the N.V. Sklifosovsky Institute of Clinical Medicine
8, Trubeckaya str., Moscow, 119991
A. A. Posnov
Russian Federation
Posnov Anton A., Resident Physician of the Department of Anesthesiology and Intensive Care of the N.V. Sklifosovsky Institute of Clinical Medicine
8, Trubeckaya str., Moscow, 119991
B. M Tlisov
Russian Federation
Tlisov Boris M., Cardiovascular Surgeon, Department of Cardiovascular Surgery, University Clinical Hospital № 1
8, Trubeckaya str., Moscow, 119991
V. F. Petrovskii
Russian Federation
Petrovsky Vladimir F., Student
8, Trubeckaya str., Moscow, 119991
References
1. Balakhnin D. G., Cheremnykh I. I., Ivkin A. A. et al. The problem of acute kidney injury in cardiac surgery patients. Messenger of Anesthesiology and Resuscitation, 2022, vol. 19, no. 5, pp. 93–101. (In Russ.). http://doi.org/10.21292/2078-5658-2022-19-5-93-101.
2. Kamenshchikov N. O., Podoksenov Y. K., Dyakova M. L. et al. Acute kidney injury in cardiac surgery: predictive diagnostics in the preoperative period. Pathol Blood Circ Cardiac Surg, 2021, vol. 25, no. 1, pp. 40–51. (In Russ.). http://doi.org/10.21688/1681-3472-2021-1-40-51.
3. Polushin Y. S., Sokolov D. V., Molchan N. S. et al. Acute kidney injury during cardiac surgery with cardiopulmonary bypass. Messenger of Anesthesiology and Resuscitation, 2021, vol. 18, no. 6, pp. 38–47. (In Russ.). http://doi.org/10.21292/2078-5658-2021-18-6-38-47.
4. Polushin Y. S., Sokolov D. V., Belousov D. Yu., Cheberda A. E. Pharmacoeconomic evaluation of intermittent and continuous renal replacement therapy. Vestn Anesteziol Reanimatol, 2017, vol. 14, no. 6, pp. 6–20. (In Russ.). http://doi.org/10.21292/2078-5658-2017-14-6-6-20.
5. Alshahrani S. Renin-angiotensin-aldosterone pathway modulators in chronic kidney disease: a comparative review. Front Pharmacol, 2023, vol. 14, pp. 1101068, http://doi.org/10.3389/fphar.2023.1101068.
6. Baiardo Redaelli M., Monaco F., Bradic N. et al. Amino acid infusion for kidney protection in cardiac surgery patients with chronic kidney disease: a secondary analysis of the PROTECTION trial. Anesthesiology, 2025, vol. 142, no. 5, pp. 818–828. http://doi.org/10.1097/ALN.0000000000005336.
7. Beaubien-Souligny W., Benkreira A., Robillard P. et al. Alterations in portal vein flow and intrarenal venous flow are associated with acute kidney injury after cardiac surgery: a prospective observational cohort study. J Am Heart Assoc, 2018, vol. 7, no. 19, pp. e009961. http://doi.org/10.1161/JAHA.118.009961.
8. Bosch J. P., Saccaggi A., Lauer A. et al. Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate. Am J Med, 1983, vol. 75, no. 6, pp. 943–950. http://doi.org/10.1016/0002-9343(83)90343-0z.
9. Brezis M., Silva P., Epstein F. H. Amino acids induce renal vasodilatation in isolated perfused kidney: coupling to oxidative metabolism. Am J Physiol Heart Circ Physiol, 1984, vol. 247, pp. H999–H1004. http://doi.org/10.1152/ajpheart.1984.247.6.H999.
10. Cachat F., Combescure C., Cauderay M. et al. A systematic review of glomerular hyperfiltration assessment and definition in the medical literature. Clin J Am Soc Nephrol, 2015, vol. 10, no. 3, pp. 382–389.
11. Claris-Appiani A., Ardissino G., Tirelli A. S. et al. Metabolic factors in the renal response to amino acid infusion. Am J Nephrol, 1998, vol. 18, pp. 359–366. http://doi.org/10.1159/000013377.
12. De Lorenzo A., Bomback A. S., Mihic N. High protein diets and glomerular hyperfiltration in athletes and bodybuilders: is chronic kidney disease the real finish line? Sports Med, 2024, vol. 54, no. 10, pp. 2481–2495. http://doi.org/10.1007/s40279-024-02086-1.
13. De Moor B., Vanwalleghem J. F., Swennen Q. et al. Haemodynamic or metabolic stimulation tests to reveal the renal functional response: requiem or revival? Clin Kidney J, 2018, vol. 11, pp. 623–654.
14. De Nicola L., Blantz R. C., Gabbai F. B. Nitric oxide and angiotensin II: glomerular and tubular interaction in the rat. J Clin Invest, 1992, vol. 89, no. 4, pp. 1248–1256. http://doi.org/10.1172/JCI115709.
15. De Nicola L., Blantz R. C., Gabbai F. B. Renal functional reserve in treated and untreated hypertensive rats. Kidney Int, 1991, vol. 40, no. 3, pp. 406–412. http://doi.org/10.1038/ki.1991.226.
16. Fioretto P., Trevisan R., Valerio A. et al. Impaired renal response to a meat meal in insulin-dependent diabetes: role of glucagon and prostaglandins. Am J Physiol Renal Physiol, 1990, vol. 258, pp. F675–F683. http://doi.org/10.1152/ajprenal.1990.258.3.F675.
17. Fliser D., Franek E., Joest M. et al. Renal function in the elderly: impact of hypertension and cardiac function. Kidney Int, 1997, vol. 51, no. 4, pp. 1196–1204. http://doi.org/10.1038/ki.1997.163.
18. Fuhrman D. Y. The role of renal functional reserve in predicting acute kidney injury. Crit Care Clin, 2021, vol. 37, no. 2, pp. 399–407. http://doi.org/10.1016/j.ccc.2020.11.008.
19. Gui Y., Dai C. mTOR signaling in kidney diseases. Kidney360, 2020, vol. 1, no. 11, pp. 1319–1327. http://doi.org/10.34067/KID.0003782020.
20. Holm J., Vanky F., Svedjeholm R. Association of glutamate infusion with risk of acute kidney injury after coronary artery bypass surgery: a pooled analysis of 2 randomized clinical trials. JAMA Netw Open, 2024, vol. 7, no. 1, pp. e2351743. http://doi.org/10.1001/jamanetworkopen.2023.51743.
21. Husain-Syed F., Emlet D. R., Wilhelm J. et al. Effects of preoperative high-oral protein loading on short- and long-term renal outcomes following cardiac surgery: a cohort study. J Transl Med, 2022, vol. 20, no. 1, pp. 204. http://doi.org/10.1186/s12967-022-03410-x.
22. Husain-Syed F., Ferrari F., Sharma A. et al. Preoperative renal functional reserve predicts risk of acute kidney injury after cardiac operation. Ann Thorac Surg, 2018, vol. 105, pp. 1094–1101. http://doi.org/10.1016/j.athoracsur.2017.12.034.
23. Inker L. A., Eneanya N. D., Coresh J. et al. New creatinine- and cystatin C-based equations to estimate GFR without race. N Engl J Med, 2021, vol. 385, pp. 1737–1749. http://doi.org/10.1056/NEJMoa2102953
24. Jufar A. H., Lankadeva Y. R., May C. N. et al. Renal functional reserve: from physiological phenomenon to clinical biomarker and beyond. Am J Physiol Regul Integr Comp Physiol, 2020, vol. 319, no. 6, pp. R690–R702. http://doi.org/10.1152/ajpregu.00237.2020.
25. Kamenshchikov N. O., Anfinogenova Y. J., Kozlov B. N. Nitric oxide delivery during cardiopulmonary bypass reduces acute kidney injury: A randomized trial. J Thorac Cardiovasc Surg, 2022, vol. 163, no. 4, pp. 1393–1403. http://doi.org/10.1016/j.jtcvs.2020.03.182.
26. Kazawa M., Kabata D., Yoshida H. et al. Amino acids to prevent cardiac surgery-associated acute kidney injury: a randomized controlled trial. JA Clin Rep, 2024, vol. 10, Art. 19. http://doi.org/10.1186/s40981-024-00703-6.
27. Keijzer-Veen M. G., Kleinveld H. A., Lequin M. H. et al. Renal function and size at young adult age after intrauterine growth restriction and very premature birth. Am J Kidney Dis, 2007, vol. 50, pp. 542–551. http://doi.org/10.1053/j.ajkd.2007.06.015.
28. Kikuchi H., Chou C. L., Yang C. R. et al. Signaling mechanisms in renal compensatory hypertrophy revealed by multi-omics. Nat Commun, 2023, vol. 14, pp. 3481. http://doi.org/10.1038/s41467-023-38958-9.
29. Kotani Y., Baiardo Redaelli M., Pruna A. et al. Intravenous amino acid for kidney protection: current understanding and future perspectives. Clin Kidney J, 2024, vol. 18, no. 2, pp. sfae409. http://doi.org/10.1093/ckj/sfae409.
30. Landoni G., Fochi O., Di Prima A. L. et al. Intravenous amino acid therapy for kidney protection in chronic kidney disease patients undergoing cardiac surgery: a subgroup analysis of the PROTECTION trial. Anesthesiology, 2024, vol. 140, no. 2, pp. 123–134. http://doi.org/10.1097/ALN.0000000000004693.
31. Landoni G., Monaco F., Ti L.K. et al. A randomized trial of intravenous amino acids for kidney protection. New England Journal of Medicine, 2024, vol. 391, no. 12, pp. 687–698. http://doi.org/10.1056/NEJMoa240376.
32. Langleben D., Fox B. D., Orfanos S. E. et al. Pulmonary capillary recruitment and distention in mammalian lungs: species similarities. Eur Respir Rev, 2022, vol. 31, no. 163, pp. 210248. http://doi.org/10.1183/16000617.0248-2021.
33. Liu K. D., Brakeman P. R. Renal repair and recovery. Crit Care Med, 2008, vol. 36, no. 4 Suppl, pp. S187–S192. http://doi.org/10.1097/CCM.0b013e318168ca4a.
34. Losiggio R., Baiardo Redaelli M., Pruna A. et al. The renal effects of amino acids infusion. Signa Vitae, 2024, vol. 20, no. 7, pp. 1–4. http://doi.org/10.22514/sv.2024.079.
35. Lytvyn Y., Kimura K., Peter N. et al. Renal and vascular effects of combined SGLT2 and angiotensin-converting enzyme inhibition. Circulation, 2022, vol. 146, no. 6, pp. 450–462. http://doi.org/10.1161/CIRCULATIONAHA.122.059150.
36. Mueller T. F., Luyckx V. A. Potential utility of renal functional reserve testing in clinical nephrology. Curr Opin Nephrol Hypertens, 2024, vol. 33, no. 1, pp. 130–135. http://doi.org/10.1097/MNH.0000000000000930.
37. Ostermann M., Cennamo A., Meersch M., Kunst G. A narrative review of the impact of surgery and anaesthesia on acute kidney injury. Anaesthesia, 2020, vol. 75, Suppl 1, pp. e121–e133. http://doi.org/10.1111/anae.14932.
38. Ow C. P. C., Ngo J. P., Ullah M. M. et al. Renal hypoxia in kidney disease: cause or consequence? Acta Physiol (Oxf), 2018, vol. 222, pp. e12999. http://doi.org/10.1111/apha.12999.
39. Pontes R. B., Crajoinas R. O., Nishi E. E. et al. Renal nerve stimulation leads to the activation of the Na+/H+ exchanger isoform 3 via angiotensin II type I receptor. Am J Physiol Renal Physiol, 2015, vol. 308, no. 8, pp. F848–F856. http://doi.org/10.1152/ajprenal.00515.2014.
40. Pu Y. The impact of continuous L-amino acid infusion on acute kidney injury in patients undergoing cardiac surgery requiring prolonged cardiopulmonary bypass. Nephrol Dial Transplant, 2018, vol. 33, no. 5, pp. 839–846. http://doi.org/10.1093/ndt/gfx265.
41. Ronco C., Bellomo R., Kellum J. A. Understanding renal functional reserve. Intensive Care Med, 2017, vol. 43, no. 6, pp. 917–923. http://doi.org/10.1007/s00134-017-4691-6.
42. Ronco C., Brendolan A., Bragantini L. et al. Renal functional reserve in pregnancy. Nephrol Dial Transplant, 1988, vol. 3, no. 2, pp. 157–161.
43. Ronco C., Chawla L. S. Glomerular and tubular kidney stress test: New tools for a deeper evaluation of kidney function. Nephron, 2016, vol. 134, no. 3, pp. 191–194. http://doi.org/10.1159/000449235.
44. Sällström J., Carlström M., Olerud J. et al. High-protein-induced glomerular hyperfiltration is independent of the tubuloglomerular feedback mechanism and nitric oxide synthases. Am J Physiol Regul Integr Comp Physiol, 2010, vol. 299, pp. R1263–R1268. http://doi.org/10.1152/ajpregu.00649.2009.
45. Sharma A., Mucino M. J., Ronco C. Renal functional reserve and renal recovery after acute kidney injury. Nephron Clin Pract, 2014, vol. 127, no. 1–4, pp. 94–100. http://doi.org/10.1159/000363721.
46. Stevens L. A., Coresh J., Greene T. et al. Assessing kidney function — measured and estimated glomerular filtration rate. N Engl J Med, 2006, vol. 354, no. 23, pp. 2473–2483. http://doi.org/10.1056/NEJMra054415.
47. Thomson S. C., Blantz R. C. Glomerulotubular balance, tubuloglomerular feedback, and salt homeostasis. J Am Soc Nephrol, 2008, vol. 19, no. 12, pp. 2272–2275. http://doi.org/10.1681/ASN.2007121326.
48. Udy A. A., Baptista J. P., Lim N. L. et al. Augmented renal clearance in the ICU: results of a multicentre observational study of renal function in critically ill patients with normal plasma creatinine concentrations. Crit Care Med, 2014, vol. 42, pp. 520–527. http://doi.org/10.1097/CCM.0000000000000029.
49. Upadhyay A. SGLT2 inhibitors and kidney protection: mechanisms beyond tubuloglomerular feedback. Kidney360, 2024, vol. 5, no. 5, pp. 771–782. http://doi.org/10.34067/KID.0000000000000425.
50. Warwick J., Holness J. Measurement of glomerular filtration rate. Semin Nucl Med, 2022, vol. 52, pp. 453–466. http://doi.org/10.1053/j.semnuclmed.2021.12.005.
Review
For citations:
Kasim T.Kh., Yavorovsky A.G., Mandel I.A., Politov M.E., Nogtev P.V., Khalikova E.Y., Bulanova E.L., Vyzhigina M.A., Posnov A.A., Tlisov B.M., Petrovskii V.F. Assessment of the renal functional reserve for predicting the development of cardiosurgically associated acute kidney injury (literature review). Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2025;22(5):121-131. (In Russ.) https://doi.org/10.24884/2078-5658-2025-22-5-121-131