Preview

Messenger of ANESTHESIOLOGY AND RESUSCITATION

Advanced search

Cardiorespiratory monitoring capabilities using indirect calorimetry during peripheral veno-arterial extracorporeal membrane oxygenation in a patient following emergency cardiac surgery

https://doi.org/10.24884/2078-5658-2025-22-4-86-92

Abstract

The objective was to demonstrate the potential of indirect calorimetry in the comprehensive assessment of cardiopulmonary oxygen transport dynamics during peripheral venoarterial extracorporeal membrane oxygenation (VAECMO) in a patient with severe heart failure following emergency cardiac surgery.

Conclusion. The comprehensive evaluation of cardiopulmonary oxygen transport using indirect calorimetry provides valuable information, broadening the diagnostic capabilities for metabolic disturbances in low cardiac output syndrome. This approach allows for effective management of pharmacological therapy and mechanical support of the compromised heart.

About the Authors

A. A. Eremenko
Petrovsky National Research Center of Surgery; I. M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Eremenko Alexander A., Dr. of Sci. (Med.), Professor, Corresponding Member of the RAS, Head of the Department of Resuscitation and Intensive Care 2, Petrovsky National Research Center of Surgery; Professor of the Department of Anesthesiology and Intensive Care, I. M. Sechenov First Moscow State Medical University

2, Abrikosovsky per., Moscow, 119435

8, Trubetskaya str., Moscow, 119991



L. S. Sorokina
Petrovsky National Research Center of Surgery
Russian Federation

Sorokina Lyubov S., Cand. of Sci. (Med.), Senior Research Fellow, Anesthesiologist and Itensivist, Petrovsky National Research Center of Surgery

2, Abrikosovsky per., Moscow, 119435



E. R. Charchyan
Petrovsky National Research Center of Surgery
Russian Federation

Charchyan Edward R., Dr. of Sci. (Med.), Professor, Corresponding Member of the RAS, Head of the Department of Reconstructive and Restorative Cardiovascular Surgery

2, Abrikosovsky per., Moscow, 119435



M. A. Babaev
Petrovsky National Research Center of Surgery
Russian Federation

Babaev Maxim A., Dr. of Sci. (Med.), Chief Research Fellow

2, Abrikosovsky per., Moscow, 119435



S. S. Yudina
Petrovsky National Research Center of Surgery
Russian Federation

Yudina Sofia S., Junior Research Fellow

2, Abrikosovsky per., Moscow, 119435



S. V. Fedulova
Petrovsky National Research Center of Surgery
Russian Federation

Fedulova Svetlana V., Cand. of Sci. (Med.), Head of the Department of Intraoperative Diagnostics

2, Abrikosovsky per., Moscow, 119435



M. N. Kabanova
Petrovsky National Research Center of Surgery
Russian Federation

Kabanova Marina N., Cardiologist at the Department of Reconstructive and Restorative Cardiovascular Surgery

2, Abrikosovsky per., Moscow, 119435



References

1. Belov Yu. V., Abugov S. A., Charchyan E. R. The use of “hybrid” technologies in the treatment of patients with dissection of the entire aorta. Cardiology and cardiovascular surgery, 2008, vol. 1, pp. 80–83. (In Russ.).

2. Belov Yu. V., Charchian É. R., Stepanenko A. B. et al. Surgical treatment of DeBakey type 1 aortic dissection. Pirogov Russian Journal of Surgery, 2018, no. 7, pp. 8–17. (In Russ.).

3. Sorokina L. S., Yudina S. S., Petrov A. S., Eremenko A. A. Indirect calorimetry for metabolic monitoring in intensive care units. Regenerative Biotechnolo gies, Preventive, Digital and Predictive Medicine, 2024, vol. 1, no. 4, pp. 20–26. (In Russ.).

4. Sorokina L. S., Yudina S. S., Petrov A. S. et al. Assessment of real myocardial energy demand using indirect calorimetry in early postoperative period af ter cardiac surgery. Pirogov Russian Journal of Surgery, 2024, vol. 2, no. 12, pp. 50–57. (In Russ.).

5. Becher P. M., Schrage B., Sinning C. R. et al. Venoarterial extracor poreal membrane oxygenation for cardiopulmonary support // Cir culation. – 2018. – Vol. 138, № 20. – P. 2298–2300. https://doi.org/10. 1161/CIRCULATIONAHA.118.036691.

6. Berger D., Stanger E. J., Jenni H. et al. modified thermodilution for si multaneous cardiac output and recirculation assessment in veno-venous extracorporeal membrane oxygenation: a prospective diagnostic accuracy study // Anesthesiology. – 2024. – Vol. 140, № 5. – P. 1002–1015. https://doi.org/10.1097/ALN.0000000000004895.

7. Bhatia M., Katz J. N. Contemporary Comprehensive Monitoring of Veno-arte rial Extracorporeal Membrane Oxygenation Patients // Can J Cardiol. – 2020. – Vol. 36, № 2. – P. 291–299. https://doi.org/10.1016/j.cjca.2019.10.031. PMID: 31924449.

8. Castro D. M., Morris I., Teijeiro-Paradis R. et al. Monitoring during extra corporeal membrane oxygenation // Curr Opin Crit Care. – 2022. – Vol. 28, № 3. – P. 348–359. https://doi.org/10.1097/MCC.0000000000000939.

9. Chung M., Shiloh A. L., Carlese A. Monitoring of the adult patient on veno arterial extracorporeal membrane oxygenation // Scientific World Journal. – 2014. – 393258. https://doi.org/10.1155/2014/393258.

10. Douflé G., Ferguson N. D. Monitoring during extracorporeal membrane oxygenation // Curr Opin Crit Care. – 2016. – Vol. 22, № 3. – P. 230–238. https://doi.org/10.1097/MCC.0000000000000309.

11. Epstein C. D., Peerless J. R., Martin J. E. et al. Comparison of methods of measurements of oxygen consumption in mechanically ventilated patients with multiple trauma: the Fick method versus indirect calorimetry // Crit Care Med. – 2000. – Vol. 28, № 5. – P. 1363–1369. https://doi.org/10.1097/0 0003246-200005000-00017.

12. Hall E. J., Agarwal S., Cullum C. M. et al. Survivorship after cardiogenic shock // Circulation. – 2025. – Vol. 151, № 3. – P. 257–271. https://doi.org/10.1161/CIRCULATIONAHA.124.068203.

13. Harjola V. P., Mebazaa A., Čelutkienė J. et al. Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology // Eur J Heart Fail. – 2016. – Vol. 18, № 3. – P. 226–41. https://doi.org/10.1002/ejhf.478.

14. Hoeyer-Nielsen A. K., Holmberg M. J., Grossestreuer A. V. et al. Association between the oxygen consumption: lactate ratio and survival in critically ill patients with sepsis // Shock. – 2021. – Vol. 55, № 6. – P. 775–781. https://doi.org/10.1097/SHK.0000000000001661.

15. Inadomi C., Terao Y., Yamashita K. et al. Comparison of oxygen consumption calculated by Fick’s principle (using a central venous catheter) and measured by indirect calorimetry // J Anesth. – 2008. – Vol. 22, № 2. – P. 163–166. https://doi.org/10.1007/s00540-007-0588-9.

16. Keebler M. E., Haddad E. V., Choi C. W. Et al. Venoarterial extracorporeal membrane oxygenation in cardiogenic shock // JACC Heart Fail. – 2018. – Vol. 6, № 6. – P. 503–516. https://doi.org/10.1016/j.jchf.2017.11.017. PMID: 29655828.

17. Keller S. P. Management of peripheral venoarterial extracorporeal membrane oxygenation in cardiogenic shock // Crit Care Med. – 2019. – Vol. 47, № 9. – P. 1235–1242. https://doi.org/10.1097/CCM.0000000000003879.

18. Keinänen O., Takala J. Calculated versus measured oxygen consumption during and after cardiac surgery. Is it possible to estimate lung oxygen con sumption? // Acta Anaesthesiol Scand. – 1997. – Vol. 41, № 7. – P. 803–809. https://doi.org/10.1111/j.1399-6576.1997.tb04792.x.

19. Khorsandi M., Dougherty S., Bouamra O. et al. Extra-corporeal membrane oxygenation for refractory cardiogenic shock after adult cardiac surgery: a systematic review and meta-analysis // J Cardiothorac Surg. – 2017. – Vol. 12, № 1. – P. 55. https://doi.org/10.1186/s13019-017-0618-0.

20. Kuan-Chih H., Lian-Yu L., Yih-Sharng C. et al. Three-dimensional echocar diography–derived right ventricular ejection fraction correlates with success of decannulation and prognosis in patients stabilized by venoarterial extracor poreal life support // Journal of the American Society of Echocardiography. – 2018. – Vol. 31, Is. 2. – P. 169–179. https://doi.org/10.1016/j.echo.2017.09.004.

21. Li G., Zeng J., Liu Z. et al. The pulsatile modification improves hemody namics and attenuates inflammatory responses in extracorporeal membrane oxygenation // J Inflamm Res. – 2021. – Vol. 14. – P. 1357–1364. https://doi.org/10.2147/JIR.S292543.

22. Mebazaa A., Combes A., van Diepen S. et al. Management of cardiogenic shock complicating myocardial infarction // Intensive Care Med. – 2018. – Vol. 44, № 6. – P. 760–773. https://doi.org/10.1007/s00134-018-5214-9.

23. Naidu S. S., Baran D. A., Jentzer J. C. et al. SCAI SHOCK Stage Classifica tion Expert Consensus Update: A Review and Incorporation of Validation Studies: This statement was endorsed by the American College of Cardiology (ACC), American College of Emergency Physicians (ACEP), American Heart Association (AHA), European Society of Cardiology (ESC) Association for Acute Cardiovascular Care (ACVC), International Society for Heart and Lung Transplantation (ISHLT), Society of Critical Care Medicine (SCCM), and Society of Thoracic Surgeons (STS) in December 2021 // J Am Coll Cardiol. – 2022. – Vol. 79, № 9. – P. 933–946. https://doi.org/10.1016/j.jacc.2022.01.018. PMID: 35115207.

24. Nesseler N., Gouin-Thibaut I., Parasido A. et al. Early endothelial injury in car diogenic shock patients on venoarterial ECMO // Intensive Care Med. – 2024. – Vol. 50, № 11. – P. 1929–1930. https://doi.org/10.1007/s00134-024-07642-x.

25. Peris A., Lazzeri C., Cianchi G. et al. Clinical significance of echocardiog raphy in patients supported by venous-venous extracorporeal membrane oxygenation // J Artif Organs. – 2015. – Vol. 18, № 2. – P. 99–105. https://doi.org/10.1007/s10047-015-0824-2.

26. Shea M. G., Balaji L., Grossestreuer A. V. et al. Oxygen metabolism after cardiac arrest: Patterns and associations with survival // Resusc Plus. – 2024. – Vol. 19. – 100667. https://doi.org/10.1016/j.resplu.2024.100667.

27. Sion-Sarid R., Cohen J., Houri Z. et al. Indirect calorimetry: a guide for op timizing nutritional support in the critically ill child // Nutrition. – 2013. – Vol. 29, № 9. – P. 1094–1099. https://doi.org/10.1016/j.nut.2013.03.013.

28. Uber A., Grossestreuer A. V., Ross C. E. et al. Preliminary observations in systemic oxygen consumption during targeted temperature management after cardiac arrest // Resuscitation. – 2018. – Vol. 127. – P. 89–94. https://doi.org/10.1016/j.resuscitation.2018.04.001.

29. Thiele H., Belohlavek J., Hassager C. Routine venoarterial extracorporeal membrane oxygenation for acute myocardial infarction-related cardiogen ic shock: what we know and don’t know // Intensive Care Med. – 2024. – Vol. 50. – P. 1354–1357. https://doi.org/10.1007/s00134-024-07517-1.

30. Walsh T. S., Hopton P., Lee A. A comparison between the Fick method and indirect calorimetry for determining oxygen consumption in patients with fulminant hepatic failure // Crit Care Med. – 1998. – Vol. 26, № 7. – P. 1200–7. https://doi.org/10.1097/00003246-199807000-00020.


Review

For citations:


Eremenko A.A., Sorokina L.S., Charchyan E.R., Babaev M.A., Yudina S.S., Fedulova S.V., Kabanova M.N. Cardiorespiratory monitoring capabilities using indirect calorimetry during peripheral veno-arterial extracorporeal membrane oxygenation in a patient following emergency cardiac surgery. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2025;22(4):86-92. (In Russ.) https://doi.org/10.24884/2078-5658-2025-22-4-86-92



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)