Preview

Messenger of ANESTHESIOLOGY AND RESUSCITATION

Advanced search

A new technique for determining cell-free DNA levels and its diagnostic capabilities in patients with septic shock

https://doi.org/10.24884/2078-5658-2025-22-4-31-42

Abstract

Introduction. Multiple studies were shown significant role of cell-free DNA (cfDNA) as a marker and mediator of the septic process. Excessive formation of cfDNA is associated with adverse clinical events, which allows to consider this structure as a potential target for therapy.

The objective was to study the level of cell-free DNA in patients with septic shock, to evaluate the correlation of the cfDNA level with clinical and laboratory data of patients, and the incidence of acute kidney injury and mortality.

Materials and methods. The prospective single-center observational pilot study included 52 patients over 18 years old with septic shock (Sepsis-3 criteria) admitted to the intensive care unit of the Moscow City Clinical Hospital named after S. S. Yudin of the Health Department of Moscow from August 2023 to May 2024.

Results. The final number of patients included in the study was n = 52 (64% of men and 36% of women) aged 52.1 ± 17.3 years, with a severity score according to SOFA 10 ± 4 and Apache II 22 ± 7 points, respectively. The concentration of cfDNA was 3041 (876–7815.0) ng/ml. Correlation analysis revealed associations of various directions with clinical and laboratory data, the most significant was a moderately positive correlation with the level of lactate (rxy = 0.49, p < 0.0001) and creatinine (rxy = 0.42, p < 0.002). ROC curve analysis showed an association between the level of cfDNA and 28-day mortality (area under the curve 0.69, AUC 95% confidence interval (CI) (0.54–0.84), p = 0.031; cut off level – 1893 ng/ml; sensitivity – 72.2% and specificity – 62.5%).

Conclusion. The study found that cfDNA had diagnostic value in septic shock, and the level of cfDNA correlated with clinical diagnostic data and significant clinical events in patients with septic shock.

About the Authors

M. S. Grinenko
Moscow City Clinical Hospital named after S. S. Yudin
Russian Federation

Grinenko Marina S., Anesthesiologist and Intensivist, General Intensive Care Unit, Moscow City Clinical Hospital named after S. S. Yudin

4, Kolomenskiy proezd, Moscow, Russia, 115446



O. V. Ignatenko
Moscow City Clinical Hospital named after S. S. Yudin; Russian Medical Academy of Continuous Professional Education; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Ignatenko Оlgа V., Anesthesiologist and Intensivist, Cand. of Sci. (Med.), Deputy Chief Physician for Anesthesiology and Intensive Care, Moscow City Clinical Hospital named after S. S. Yudin; Associate Pro fessor of the Department of Anesthesiology and Intensive Care Medicine named after Professor E. A. Damir, Russian Medical Academy of Continuous Professional Education

4, Kolomenskiy proezd, Moscow, Russia, 115446

2/1, build. 1, Barricade str., Moscow, 125993

25, build. 2, Petrovka str., Moscow, 107031



A. A. Doronenkova
Moscow City Clinical Hospital named after S. S. Yudin
Russian Federation

Doronenkova Аnastasiya А., Anesthesiologist and Intensivist, Moscow City Clinical Hospital named after S. S. Yudin

4, Kolomenskiy proezd, Moscow, 115446



I. A. Zaigraev
Moscow City Clinical Hospital named after S. S. Yudin; National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Zaigraev Ivan А., General Practitioner, Moscow City Clinical Hospital named after S. S. Yudin, Junior Research Fellow of the Department of Fundamental and Clinical Problems of Thrombosis in Non communicable Diseases of the National Medical Research Center for Therapy and Preventive Medicine

4, Kolomenskiy proezd, Moscow, 115446

7, Kitaygorodskiy proezd, Moscow, 109074



N. P. Krotenko
Moscow City Clinical Hospital named after S. S. Yudin; Russian Medical Academy of Continuous Professional Education
Russian Federation

Krotenko Nikolay P., Cand. of Sci. (Med.), Anesthesiologist and Intensivist, Head of the General Intensive Care Unit, Moscow City Clinical Hospital named after S. S. Yudin, Associate Professor of the Department of Anesthesiology and Intensive Care Medicine named after Professor E. A. Damir, Russian Medical Academy of Continuous Professional Education

4, Kolomenskiy proezd, Moscow, 115446

2/1, build. 1, Barricade str., Moscow, 125993



M. I. Afanasyeva
National Medical Research Center for Cardiology named after academician E. I. Chazov
Russian Federation

Afanasyeva Marina I., Research Fellow, National Medical Research Center for Cardiology named after academician E. I. Chazov

15a, Akademika Chazova str., Moscow, 121552



N. S. Pokrovskiy
National Medical Research Center for Cardiology named after academician E. I. Chazov
Russian Federation

Pokrovskiy Nikolay S., Junior Research Fellow, National Medical Research Center for Cardiology named after academician  E. I. Chazov

15a, Akademika Chazova str., Moscow, 121552



References

1. Kirov M. Yu., Kuzkov V. V., Protsenko D. N. et al. Septic shock in adults: guidelines of the All-Russian public organization “Federation of Anesthesiologists and Reanimatologists”. Annals of Critical Care, 2023, no. 4, pp. 7–42. (In Russ.). https://doi.org/10.21320/1818-474X-2023-4-7-42.

2. Pisarev V. M., Chumachenko A. G., Filev A. D. Combination of DNA Molecular Biomarkers in the Prediction of Critical Illness Outcome. General Reanimatology, 2019, vol. 15, no. 3, pp. 31–47. (In Russ.). https://doi.org/10.15360/1813-9779-2019-3-31-47.

3. Filev A. D., Pisarev V. M. Cell-Free DNA in Emergency Medical Care. Emergency Medical Care, 2020, vol. 9, no. 1, pp. 96–107. (In Russ.).https://doi.org/10.23934/2223-9022-2020-9-1-96-107.

4. Alcaide M., Cheung M., Hillman J. Evaluating the quantity, qual ity and size distribution of cell-free DNA by multiplex droplet digital PCR // Scientific Reports. – 2020. – Vol. 10, № 1. – P. 12564. http://doi.org/10.1038/s41598-020-69432-x.

5. Avriel A., Paryente Wiessman M., Almog Y. Admission cell free DNA levels predict 28-day mortality in patients with severe sepsis in intensive care // PLoS ONE. – 2014. – Vol. 9, № 6. – P. e100514. http://doi.org/10.1371/journal.pone.0100514.

6. Beltrán-García J., Manclús J., García-López E. Comparative analysis of chro matin-delivered biomarkers in the monitoring of sepsis and septic shock: a pilot study // International Journal of Molecular Sciences. – 2021. – Vol. 22, № 18. – P. 9935. http://doi.org/10.3390/ijms22189935.

7. Charoensappakit A., Sae-khow K., Rattanaliam P. Cell-free DNA as diagnos tic and prognostic biomarkers for adult sepsis: a systematic review and me ta-analysis // Scientific Reports. – 2023. – Vol. 13, № 1. – P. 19624. http://doi.org/10.1038/s41598-023-46663-2.

8. Chen Z., Zhang H., Qu M. Review: The Emerging role of neutrophil ex tracellular traps in sepsis and sepsis-associated thrombosis // Frontiers in Cellular and Infection Microbiology. – 2021. – Vol. 11. – P. 653228. http://doi.org/10.3389/fcimb.2021.653228.

9. Cheng Z., Abrams S., Austin J. The central role and possible mechanisms of bacterial dnas in sepsis developmen // Mediators of Inflammation. – 2020. – 7418342. – P. 1–11. http://doi.org/10.1155/2020/7418342.

10. Clementi A., Virzì G., Brocca A. The Role of Cell-Free plasma DNA in criti cally ill patients with sepsis // Blood Purification. – 2016. – Vol. 41, № 1–3. – P. 34–40. http://doi.org/10.1159/000440975.

11. Czaikoski P. G., Mota J., Nascimento D. Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis // PLOS ONE. – 2016. – Vol. 11, № 2. – P. e0148142. http://doi.org/10.1371/journal.pone.0148142.

12. Dennhardt S., Ceanga I., Baumbach P. Cell-free DNA in patients with sepsis: long term trajectory and association with 28-day mortality and sepsis-asso ciated acute kidney injury // Frontiers in Immunology. – 2024. – Vol. 15. – P. 1382003. http://doi.org/10.3389/fimmu.2024.1382003.

13. Denning N.-L., Aziz M., Gurien S. DAMPs and NETs in Sepsis // Frontiers in im munology. – 2019. – Vol. 10. – P. 2536. http://doi.org/10.3389/fimmu.2019.02536.

14. Duplessis C., Gregory M., Frey K. Evaluating the discriminating capacity of cell death (apoptotic) biomarkers in sepsis // Journal of Intensive Care. – 2018. – № 6. – P. 72. http://doi.org/10.1186/s40560-018-0341-5.

15. Englert H., Rangaswamy C., Deppermann C. Defective NET clearance con tributes to sustained FXII activation in COVID-19-associated pulmonary thrombo-inflammation // EBioMedicine. – 2021. – Vol. 67. – P. 103382. http://doi.org/10.1016/j.ebiom.2021.103382.

16. Evans L., Rhodes A., Alhazzani W. Surviving sepsis campaign: interna tional guidelines for management of sepsis and septic shock 2021 // Criti cal Care Medicine. – 2021. – Vol. 47, № 11. –P. e1063–e1143. http://doi.org/10.1097/CCM.0000000000005337.

17. Fuchs T. A., Brill A., Duerschmied D. Extracellular DNA traps promote thrombosis // Proceedings of the National Academy of Sciences. – 2010. – Vol. 107, № 36. – P. 15880–15885. http://doi.org/10.1073/pnas.1005743107.

18. Fyodorov D. V., Zhou B. R., Skoultchi A. Emerging roles of linker histones in regulating chromatin structure and function // Nature Reviews Molecular Cell Biology. – 2018. – Vol. 19, № 3. – P. 192–206. http://doi.org/10.1038/nrm.2017.94.

19. Gierlikowska B., Stachura A., Gierlikowski W. The impact of cytokines on neutrophils’ phagocytosis and net formation during sepsis – a review // In ternational Journal of Molecular Sciences. – 2022. – Vol. 23, № 9. – P. 5076. http://doi.org/10.3390/ijms23095076.

20. Haem Rahimi M., Bidar F., Lukaszewicz A. Association of pronounced eleva tion of NET formation and nucleosome biomarkers with mortality in patients with septic shock // Annals of Intensive Care. – 2023. – Vol. 13, № 1. – P. 102. http://doi.org/10.1186/s13613-023-01204-y.

21. Hotchkiss R. S., Nicholson D. W. Apoptosis and caspases regulate death and inflammation in sepsis // Nature Reviews Immunology. – 2006. – Vol. 6, № 11. – P. 813–822. http://doi.org/10.1038/nri1943.

22. Kimball A. S., Obi A. T., Diaz J. A. The emerging role of nets in venous thrombosis and immunothrombosis // Frontiers in Immunology. – 2016. – Vol. 7. – P. 236. http://doi.org/10.3389/fimmu.2016.00236.

23. Kolaczkowska E., Jenne Craig N., Surewaard Bas G. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature // Nature Communications. – 2015. – Vol. 6. – P. 6673. http://doi.org/10.1038/ncomms7673.

24. Krieg A. M. Therapeutic potential of Toll-like receptor 9 activation // Nature Reviews Drug Discovery. – 2006. – Vol. 5, № 6. – P. 471–484. http://doi.org/10.1038/nrd2059.

25. Kung C.-T., Hsiao S. Y., Tsai T. C. Plasma nuclear and mitochondrial DNA levels as predictors of outcome in severe sepsis patients in the emergen cy room // Journal of Translational Medicine. – 2012. – Vol. 10. – P. 130. http://doi.org/10.1186/1479-5876-10-130.

26. Leffler J., Martin M., Gullstrand B. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacer bating the disease // The Journal of Immunology. – 2012. – Vol. 188, № 7. – P. 3522–3531. http://doi.org/10.4049/jimmunol.1102404.

27. Liao W., Zuo X., Lin G. Microbial cell-free DNA in plasma of patients with sepsis: a potential diagnostic methodology // Discovery Medicine. – 2020. – Vol. 157, № 29. – P. 129–137.

28. Locke M., Longstaff C. Extracellular histones inhibit fibrinolysis through non covalent and covalent interactions with fibrin // Thrombosis and Haemostasis. – 2021. – Vol. 121, № 4. – P. 464–476. http://doi.org/10.1055/s-0040-1718760.

29. Maruchi Y., Tsuda M., Mori H. Plasma myeloperoxidase-conjugated DNA level predicts outcomes and organ dysfunction in patients with septic shock // Criti cal Care. – 2018. – Vol. 22. – P. 176. http://doi.org/10.1186/s13054-018-2109-7.

30. McDonald B., Davis R. P., Kim S. J. Platelets and neutrophil extracellu lar traps collaborate to promote intravascular coagulation during sep sis in mice // Blood. – 2017. – Vol. 129, № 10. – P. 1357–1367. http://doi.org/10.1182/blood-2016-09-741298.

31. Nofi C. P., Wang P., Aziz M. Chromatin-Associated molecular patterns (CAMPs) in sepsis // Cell Death & Disease. – 2022. – Vol. 13. – P. 700. http://doi.org/10.1038/s41419-022-05155-3.

32. Orbey B., Cuhruk H., Cuhruk M. Can plasma-free DNA concentration be a diagnostic tool in critically ill septic patients? // Critical Care. – 2007. – Vol. 11, № 2. – P. 48. http://doi.org/10.1186/cc5208.

33. Rafa A. Y., Filliaux S., Lyubchenko Y. L. Nanoscale characterization of interaction of nucleosomes with h1 linker histone // International Journal of Molecular Sciences. – 2024. – Vol. 26, № 1. – P. 303. http://doi.org/10.3390/ijms26010303.

34. Santocki M., Kolaczkowska E. On neutrophil extracellular trap (net) removal: what we know thus far and why so little // Cells. – 2020. – Vol. 9, № 9. – P. 2079. http://doi.org/10.3390/cells9092079.

35. Semeraro F., Ammollo C., Morrissey J. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4 // Blood. – 2011. – Vol. 118, № 7. – P. 1952–1961. http://doi.org/10.1182/blood-2011-03-343061.

36. Ungerer V., Bronkhorst A. J., Holdenrieder S. Preanalytical variables that affect the outcome of cell-free DNA measurements // Critical Reviews in Clinical Laboratory Sciences. – 2020. – Vol. 57, № 7. – P. 484–507. http://doi.org/10.1080/10408363.2020.1750558.

37. Wang H., Wang C., Zhao M. H. Neutrophil extracellular traps can activate alternative complement pathways // Clinical and Experimental Immunology. – 2015. – Vol. 181, № 3. – P. 518–527. http://doi.org/10.1111/cei.12654.

38. Xia D. L., Zhang H., Luo Qing Li. Cell-free DNA increase over first 48 hours in emergency intensive care unit predicts fatal outcome in patients with shock // Journal of International Medical Research. – 2016. – Vol. 44, № 5. – P. 1002–1012. http://doi.org/10.1177/0300060516650785.

39. Xu F., Tan X., Wang J. Cell-free DNA predicts all-cause mortality of sepsis-induced acute kidney injury // Renal Failure. – 2024. – Vol. 46, № 1. – P. 2273422. http://doi.org/10.1080/0886022X.2023.2273422.

40. Zhang H., Wang Y., Qu M. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis // Clinical and Translational Medicine. – 2023. – Vol. 13, № 1. – P. e1170. http://doi.org/10.1002/ctm2.1170.

41. Zhang M. Effects of cell-free DNA on kidney disease and intervention strategies // Frontiers in Pharmacology. – 2024. – Vol. 15. – P. 1377874. http://doi.org/10.3389/fphar.2024.1377874

42. Zhang Q., Raoof M., Chen Y. Circulating mitochondrial DAMPs cause inflammatory responses to injury // Nature. – 2010. – Vol. 7285, № 464. – P. 104–107. http://doi.org/10.1038/nature08780

43. Zhou Y., Xu Z., Liu Z. Impact of neutrophil extracellular traps on thrombosis formation: new findings and future perspective // Frontiers in Cellular and Infection Microbiology. – 2022. – Vol. 12. – P. 910908. http://doi.org/10.3389/fcimb.2022.910908


Review

For citations:


Grinenko M.S., Ignatenko O.V., Doronenkova A.A., Zaigraev I.A., Krotenko N.P., Afanasyeva M.I., Pokrovskiy N.S. A new technique for determining cell-free DNA levels and its diagnostic capabilities in patients with septic shock. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2025;22(4):31-42. (In Russ.) https://doi.org/10.24884/2078-5658-2025-22-4-31-42



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)