Dynamic assessment of clinical scales for predicting mortality in septic patients with prolonged ICU stay
https://doi.org/10.24884/2078-5658-2025-22-4-6-16
Abstract
Introduction. Sepsis remains one of the leading causes of mortality in intensive care units (ICU). Assessing the risk of fatal outcomes is crucial for clinical decision-making and improving treatment outcomes.
The objective was to determine the prognostic significance of clinical scales assessed in dynamics for predicting mortality in septic ICU patients who are predominantly in prolonged and chronic critical illness.
Materials and methods. A single-center retrospective study was conducted using data from the RICD v2.0 database. The prognostic significance of the APACHE II, NUTRIC, SOFA scales, SIRS criteria, and PNI index was assessed dynamically, with focus on time to the fatal outcome. Sepsis was diagnosed using Sepsis-3 criteria. The primary endpoint was the area under the ROC curve (AUROC).
Results. The study included 52 sepsis patients (33 men, median age was 60 years old, median ICU stay was 57 days, mortality rate was 11.5%). The highest prognostic effectiveness was found for the APACHE II and NUTRIC scales when assessed 1–14 days before the fatal outcome (AUROC 0.91 and 0.90, respectively). For assessments conducted ≥ 15 days before the fatal outcome, prognostic significance was maintained only for the NUTRIC scale (≥ 6 points, AUROC 0.82). Both APACHE II and NUTRIC scales demonstrated high negative predictive value, allowing effective identification of patients with low mortality risk.
Conclusions. Dynamic assessment of the APACHE II and NUTRIC scales is important for predicting mortality in sepsis patients with prolonged ICU stays. The NUTRIC scale retains its prognostic value when assessed ≥ 15 days before the fatal outcome, confirming its role in long-term monitoring of septic patients.
About the Authors
M. Ya. YadgarovRussian Federation
Yadgarov Mikhail Ya., Cand. of Sci. (Med.), Deputy Director for Innovation, Leading Research Fellow at the Laboratory of Clinical Researches and Intelligent Information Technologies, Research Institute of Rehabilitation named after Prof. Pryanikov I. V.
25, build. 2, Petrovka str., Moscow, 107031
L. B. Berikashvili
Russian Federation
Berikashvili Levan B., Cand. of Sci. (Med.), Senior Research Fellow at the Laboratory of Clinical Researches and Intelligent Information Technologies, Research Institute of Rehabilitation named after Prof. Pryanikov I. V.
25, build. 2, Petrovka str., Moscow, 107031
I. V. Kuznetsov
Russian Federation
Kuznetsov Ivan V., Junior Research Fellow at the Laboratory of Clinical Researches and Intelligent Information Technologies, Research Institute of Rehabilitation named after Prof. Pryanikov I. V.
25, build. 2, Petrovka str., Moscow, 107031
K. K. Kadantseva
Russian Federation
Kadantseva Kristina K., Research Fellow at the Laboratory of Clinical Researches and Intelligent Information Technologies, Research Institute of Rehabilitation named after Prof. Pryanikov I. V.
25, build. 2, Petrovka str., Moscow, 107031
A. A. Yakovlev
Russian Federation
Yakovlev Alexey A., Cand. of Sci. (Med.), First Deputy Director – Head of the Research Institute of Rehabilitation named after Prof. Pryanikov I. V.
25, build. 2, Petrovka str., Moscow, 107031
V. V. Likhvantsev
Russian Federation
Likhvantsev Valery V., Dr. of Sci. (Med.), Professor, Head of the Laboratory of Clinical Researches and Intelligent Information Technologies, Research Institute of Rehabilitation named after Prof. Pryanikov I. V.
25, build. 2, Petrovka str., Moscow, 107031
References
1. Bagnenko S. F., Gorobets E. S., Gusarov V. G. et al. Clinical guidelines “Sepsis (in adults)”. Messenger of anesthesiology and resuscitation, 2025, vol. 22, no. 1, pp. 80–109. https://doi.org/10.24884/2078-5658-2025-22-1-81-109. (In Russ.).
2. Grechko A. V., Yadgarov M. Y., Yakovlev A. A. et al. Russian Intensive Care Dataset — RICD. General Reanimatology, 2024, vol. 20, no. 3, pp. 22–31. https://doi.org/10.15360/1813-9779-2024-3-22-31. (In Russ.).
3. Kochkin A. A., Yadgarov M. Y., Berikashvili L. B. et al. Predictors of le thal outcomes in patients with refractory septic shock. Messenger of an esthesiology and resuscitation, 2021, vol. 18, no. 3, pp. 30–35. https://doi.org/10.21292/2078-5658-2021-18-3-30-35. (In Russ.).
4. Lyanguzov A. V., Luchinin A. S., Ignatyev S. V. et al. Predictors of mortal ity in oncohematological patients with infectious complications in intensive care unit. Russian Journal of Anesthesiology and Reanimatology, 2023, no. 1, pp. 33–38. https://doi.org/10.17116/anaesthesiology202301133. (In Russ.).
5. Abe T., Ogura H., Shiraishi A. et al. Characteristics, management, and in-hos pital mortality among patients with severe sepsis in intensive care units in Japan: The FORECAST study // Crit. Care. – 2018. – Vol. 22, № 1. – P. 322. http://doi.org/10.1186/s13054-018-2186-7.
6. Andaluz-Ojeda D., Iglesias V., Bobillo F. et al. Early natural killer cell counts in blood predict mortality in severe sepsis // Crit. Care. – 2011. – Vol. 15, № 5. – P. R243. http://doi.org/10.1186/cc10501.
7. Baek M. S., Kwon Y. S., Kang S. S. et al. Association of malnutrition status with 30-day mortality in patients with sepsis using objective nutritional indices: a multicenter retrospective study in South Korea // Acute Crit. Care. – 2024. – Vol. 39, № 1. – P. 127–137. http://doi.org/10.4266/acc.2023.01613.
8. Bloria S. D., Chauhan R., Sarna R. et al. Comparison of APACHE II and APACHE IV score as predictors of mortality in patients with septic shock in intensive care unit: A prospective observational study // J. Anaesthesiol. Clin. Pharmacol. – 2023. – Vol. 39, № 3. – P. 355–359. http://doi.org/10.4103/joacp.joacp_380_21.
9. Daud M., Ullah F., Uzair M. et al. Malnutrition and Its Influence on Sepsis Outcomes in Elderly Patients // Cureus. – 2024. – Vol. 16, № 6. – P. e63433. http://doi.org/10.7759/cureus.63433.
10. DeLong E. R., DeLong D. M., Clarke-Pearson D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach // Biometrics. – 1988. – Vol. 44, № 3. – P. 837–845.
11. Do S. N., Dao C. X., Nguyen T. A. et al. Sequential Organ Failure Assessment (SOFA) Score for predicting mortality in patients with sepsis in Vietnamese intensive care units: a multicentre, cross-sectional study // BMJ Open. – 2023. – Vol. 13, № 3. – P. e064870. http://doi.org/10.1136/bmjopen-2022-064870.
12. Elm E. von, Altman D.G., Egger M. et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies // Ann. Intern. Med. – 2007. – Vol. 147, № 8. – P. 573–577. http://doi.org/10.7326/0003-4819-147-8-200710160-00010.
13. Evans L., Rhodes A., Alhazzani W. et al. Surviving sepsis campaign: in ternational guidelines for management of sepsis and septic shock 2021 // Intensive Care Med. – 2021. – Vol. 47, № 11. – P. 1181–1247. http://doi.org/10.1007/s00134-021-06506-y.
14. Gao Q., Cheng Y., Li Z. et al. Association between nutritional risk screening score and prognosis of patients with sepsis // Infect. Drug Resist. – 2021. – Vol. 14. – P. 3817–3825. http://doi.org/10.2147/IDR.S321385.
15. Gonzalez M. C., Bielemann R. M., Kruschardt P. P. et al. Complementarity of NUTRIC score and Subjective Global Assessment for predicting 28-day mortality in critically ill patients // Clin. Nutr. – 2019. – Vol. 38, № 6. – P. 2846–2850. http://doi.org/10.1016/j.clnu.2018.12.017.
16. Hai P. D., Viet Hoa L. T. The Prognostic Accuracy Evaluation of mNUTRIC, APACHE II, SOFA, and SAPS 2 Scores for Mortality Prediction in Patients with Sepsis // Crit. Care Res. Pract. – 2022. – Vol. 2022. – P. 4666594. http://doi.org/10.1155/2022/4666594.
17. Haussner F., Chakraborty S., Halbgebauer R. et al. Challenge to the intestinal mucosa during sepsis // Front. Immunol. – 2019. – Vol. 10 – P. 891. http://doi.org/10.3389/fimmu.2019.00891.
18. Heyland D. K., Dhaliwal R., Jiang X. et al. Identifying critically ill patients who benefit the most from nutrition therapy: the development and initial validation of a novel risk assessment tool // Crit. Care. – 2011. – Vol. 15, № 6. – P. R268. http://doi.org/10.1186/cc10546.
19. Jeong D. H., Hong S. B., Lim C. M. et al. Comparison of accuracy of NUTRIC and modified NUTRIC scores in predicting 28-day mortality in patients with sepsis: A single center retrospective study // Nutrients. – 2018. – Vol. 10, № 7. – P. 911. http://doi.org/10.3390/nu10070911.
20. Jeong D. H., Hong S. B., Lim C.M. et al. Relationship between nutrition intake and 28-day mortality using modified NUTRIC score in patients with sepsis // Nutrients. – 2019. – Vol. 11, № 8. – P. 1906. http://doi.org/10.3390/nu11081906.
21. Ji M., Zhu L., Chen M. et al. Predictive value of mNUTRIC score for chronic criti cal illness in patients of sepsis complicated with ARDS // Technol. Heal. Care. – 2025. – Vol. 33, № 2. – P. 831–837. http://doi.org/10.1177/09287329241296430.
22. Kasotakis G., Whitmore C. Fat malabsorption in critical illness // Nutr. Clin. Pract. – 2024. – Vol. 39, № S1. – P. S29–S34. http://doi.org/10.1002/ncp.11121.
23. Knaus W. A., Draper E. A., Wagner D. P. et al. APACHE II: A severity of disease classification system // Crit. Care Med. – 1985. – Vol. 13, № 10. – P. 818–829. http://doi.org/10.1097/00003246-198510000-00009.
24. Kong G., Lin K., Hu Y. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU // BMC Med. Inform. Decis. Mak. – 2020. – Vol. 20, № 1. – P. 251. http://doi.org/10.1186/s12911-020-01271-2.
25. Likhvantsev V. V., Berikashvili L. B., Yadgarov M. Y. et al. The tri-steps model of critical conditions in intensive care: introducing a new paradigm for chronic critical illness // J. Clin. Med. – 2024. – Vol. 13, № 13. – P. 3683. http://doi.org/10.3390/jcm13133683.
26. Mohamed A. K. S., Mehta A. A., James P. Predictors of mortality of severe sepsis among adult patients in the medical Intensive Care Unit // Lung India. – 2017. – Vol. 34, № 4. – P. 330–335. http://doi.org/10.4103/lungindia.lungindia_54_16.
27. Moubarez D. A. The modified NUTRIC score as a predictor of 28-day mor tality in patients with sepsis // Res. Opin. Anesth. Intensive Care. – 2023. – Vol. 10, № 4. – P. 378–384. http://doi.org/10.4103/roaic.roaic_28_23.
28. Oduncu A. F., Kıyan G. S., Yalçınlı S. Comparison of qSOFA, SIRS, and NEWS scoring systems for diagnosis, mortality, and morbidity of sepsis in emergency department // Am. J. Emerg. Med. – 2021. – Vol. 48. – P. 54–59. http://doi.org/10.1016/j.ajem.2021.04.006.
29. Prakash J., Verma S., Shrivastava P. et al. Modified NUTRIC Score as a Predic tor of All-cause Mortality in Critically Ill Patients: A Systematic Review and Meta-analysis // Indian J. Crit. Care Med. – 2024. – Vol. 28, № 5. – P. 495–503. http://doi.org/10.5005/jp-journals-10071-24706.
30. Rahman A., Hasan R. M., Agarwala R. et al. Identifying critically-ill patients who will benefit most from nutritional therapy: Further validation of the “modified NUTRIC” nutritional risk assessment tool // Clin. Nutr. – 2016. – Vol. 35, № 1. – P. 158–162. http://doi.org/10.1016/j.clnu.2015.01.015.
31. Rosenthal M. D., Vanzant E. L., Moore F. A. et al. Chronic critical illness and pics nutritional strategies // J. Clin. Med. – 2021. – Vol. 10, № 11. – P. 2294. http://doi.org/10.3390/jcm10112294.
32. Sadaka F., EthmaneAbouElMaali C., Cytron M.A. et al. Predicting Mortality of Patients With Sepsis: A Comparison of APACHE II and APACHE III Scoring Systems // J. Clin. Med. Res. – 2017. – Vol. 9, № 11. – P. 907–910. http://doi. org/10.14740/jocmr3083w.
33. Shankar-Hari M., Phillips G. S., Levy M. L. et al. Developing a newdefinition and assessing newclinical criteria for Septic shock: For the third international consen sus definitions for sepsis and septic shock (Sepsis-3) // JAMA - J. Am. Med. As soc. – 2016. – Vol. 315, № 8. – P. 775–787. http://doi.org/10.1001/jama.2016.0289.
34. Viner Smith E., Lambell K., Tatucu-Babet O. A. et al. Nutrition considerations for patients with persistent critical illness: A narrative review // J. Parenter. En ter. Nutr. – 2024. – Vol. 48, № 6. – P. 658–666. http://doi.org/10.1002/jpen.2623.
35. Wang X., Kang Z., Wang Y. et al. Application of Prognostic Nutritional Index in the Predicting of Prognosis in Young Adults with Acute Ischemic Stroke // World Neurosurg. – 2023. – Vol. 178. – P. e292–e299. http://doi.org/10.1016/j.wneu.2023.07.045.
36. Wełna M., Adamik B., Kübler A. et al. The NUTRIC Score as a Tool to Predict Mortality and Increased Resource Utilization in Intensive Care Pa tients with Sepsis // Nutrients. – 2023. – Vol. 15, № 7. – P. 1648. http://doi.org/10.3390/nu15071648.
37. Wu H., Zhou C., Kong W. et al. Prognostic nutrition index is associated with the all-cause mortality in sepsis patients: A retrospective cohort study // J. Clin. Lab. Anal. – 2022. – Vol. 36, № 4. – P. e24297. http://doi.org/10.1002/jcla.24297.
38. Yuan Y., Meng Y., Li Y. et al. Development and validation of a nomogram for pre dicting 28-day in-hospital mortality in sepsis patients based on an optimized acute physiology and chronic health evaluation II score // Shock. – 2024. – Vol. 61, № 5. – P. 718–727. http://doi.org/10.1097/SHK.0000000000002335.
Review
For citations:
Yadgarov M.Ya., Berikashvili L.B., Kuznetsov I.V., Kadantseva K.K., Yakovlev A.A., Likhvantsev V.V. Dynamic assessment of clinical scales for predicting mortality in septic patients with prolonged ICU stay. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2025;22(4):6-16. (In Russ.) https://doi.org/10.24884/2078-5658-2025-22-4-6-16