Preview

Messenger of ANESTHESIOLOGY AND RESUSCITATION

Advanced search

PROTECTIVE VENTILATION AND POST-OPERATIVE RESPIRATORY COMPLICATIONS IN MAJOR PANCREATICODUODENAL SURGERY

https://doi.org/10.21292/2078-5658-2016-13-6-31-39

Abstract

Protective peri-operative ventilation can improve post-surgery outcomes and reduce the frequency of respiratory complications. The goal of the study was to evaluate the impact of ventilation with low respiratory volume solely or in combination with permissible hypercapnia (HC) on the outcomes of major pancreaticoduodenal surgery. Materials and methods. 60 patients were enrolled into prospective study who had planned pancreaticoduodenal operations lasting for more than 2 hours. All patients were randomly divided into 3 groups: mechanical ventilation with high respiratory volume (10 ml/kg of predicted body mass (PBM), HRV group, n = 20), low respiratory volume (6 ml/kg of PBM, LRV group, n = 20), and low respiratory volume with moderate HC (РаСО2 45–60 mm Hg., LRV+HC group, n = 20). Hemodynamic and respiratory parameters and frequency of complications were recorded in the peri-operative period. Results. Ratio of РаО2 /FiO in 24 hours upon surgery completion was 15% higher in LRV group compared to HRV group. Higher frequency of atelectasis and prolonged hospital stay were typical of patients from HRV group. Lower concentration of arterial blood lactate was observed in the patients from LRV+HC group. Conclusion. Preventive reduction of respiratory volume in pancreaticoduodenal surgery improves the post-operative oxygenation, decreases the frequency of atelectasis and duration of hospital stay.

 

About the Authors

L. N. Rodionova
Northern State Medical University, Arkhangelsk; E. E. Volosevich First Municipal Clinical Hospital, Arkhangelsk
Russian Federation
Post Graduate Student of Anesthesiology and Intensive Care Department


V. V. Kuzkov
Northern State Medical University, Arkhangelsk; E. E. Volosevich First Municipal Clinical Hospital, Arkhangelsk
Russian Federation
Doctor of Medical Sciences, Associate Professor, Professor of Anesthesiology and Intensive Care Department


Ya. Yu. Ilyina
Northern State Medical University, Arkhangelsk; E. E. Volosevich First Municipal Clinical Hospital, Arkhangelsk
Russian Federation
Post Graduate Student of Anesthesiology and Intensive Care Department


A. A. Ushakov
Northern State Medical University, Arkhangelsk; E. E. Volosevich First Municipal Clinical Hospital, Arkhangelsk
Russian Federation
Intern of Anesthesiology and Intensive Care Department


M. M. Sokolova
Northern State Medical University, Arkhangelsk; E. E. Volosevich First Municipal Clinical Hospital, Arkhangelsk
Russian Federation
Post Graduate Student of Anesthesiology and Intensive Care Department


E. V. Fot
Northern State Medical University, Arkhangelsk; E. E. Volosevich First Municipal Clinical Hospital, Arkhangelsk
Russian Federation
Candidate of Medical Sciences, Assistant of Anesthesiology and Intensive Care Department


B. L. Duberman
Northern State Medical University, Arkhangelsk
Russian Federation
Doctor of Medical Sciences, Associate Professor, Head of Surgery Department


M. Yu. Kirov
Northern State Medical University, Arkhangelsk; E. E. Volosevich First Municipal Clinical Hospital, Arkhangelsk
Russian Federation
Doctor of Medical Sciences, Professor, Head of Anesthesiology and Intensive Care Department


References

1. Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med., 2000, vol. 342, pp. 1301-1308.

2. Arozullah A.M., Daley J., Henderson W.G. et al. Multifactorial risk index for predicting postoperative respiratory failure in men after major noncardiac surgery. The National Veterans Administration Surgical Quality Improvement Program. Ann. Surg., 2000, vol. 232, pp. 242-253.

3. Broccard A.F., Hotchkiss J.R., Vannay C. et al. Protective effects of Hypercapnic acidosis on ventilator-induced lung injury. Am. J. Resp. Crit. Care Med., 2001, vol. 164, pp. 802-806.

4. Cai H., Gong H., Zhang L. et al. Effect of low tidal volume ventilation on atelectasis in patients during general anesthesia: a computed tomographic scan. J. Clin. Anesth., 2007, vol. 19, pp. 125-129.

5. Canet J., Gallart L., Gomar C. et al. ARISCAT Group. Prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology, 2010, vol. 113, pp. 1338-1350.

6. Canet J., Gallart L. Postoperative respiratory failure: pathogenesis, prediction, and prevention. Curr. Opin. Crit. Care, 2014, vol. 20, pp. 56-62.

7. Costello J., Higgins B., Contreras M. et al. Hypercapnic acidosis attenuates shock and lung injury in early and prolonged systemic sepsis. Crit. Care Med., 2009, vol. 37, pp. 2412-2420.

8. Cullen D.J., Eger E.I. 2nd. Cardiovascular effects of carbon dioxide in man. Anesthesiology, 1974, vol. 41, pp. 345-349.

9. Curley G., Contreras M.M., Nichol A.D. et al. Hypercapnia and acidosis in sepsis: a double-edged sword? Anesthesiology, 2010, vol. 112, pp. 462-472.

10. Determann R.M., Wolthuis E.K., Choi G. et al. Lung epithelial injury markers are not influenced by use of lower tidal volumes during elective surgery in patients without preexisting lung injury. Am. J. Physiol. Lung. Cell. Mol. Physiol., 2008, vol. 294, pp. L344–L350.

11. Futier E., Constantin J.M., Jaber S. Protective lung ventilation in operating room: a systematic review. Minerva Anestesiol., 2014, vol. 80, pp. 726-735.

12. Gonga M.N., Thompson B.T. Acute respiratory distress syndrome: shifting the emphasis from treatment to prevention. Curr. Opin. Crit. Care, 2016, vol. 22, pp. 21-37.

13. Graham T.E., Barclay J.K., Wilson B.A. Skeletal muscle lactate release and glycolitic intermediates during hypercapnia. J. Appl. Physiol., 1986, vol. 60, pp. 568-575.

14. Graham T.E., Wilson B.A., Sample M. et al. The effects of hypercapnia on the metabolic response to progressive exhaustive work. Med. Sci. Sports. Exerc., 1980, vol. 14, pp. 278-284.

15. Hickling K.G., Walsh J., Henderson S., Jackson R. Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit. Care Med., 1994, vol. 22, pp. 1568-1578.

16. Ismaiel N.M., Henzler D. Effects of hypercapnia and hypercapnic acidosis on attenuation of ventilator-associated lung injury. Minerva Anestesiol., 2011, vol. 77, pp. 723-733.

17. Laffey J.G., O’Croinin D., McLoughlin P. et al. Permissive hypercapnia - role in protective lung ventilator strategies. Int. Care Med., 2004, vol. 30, pp. 347-356.

18. Marhong J., Fan E. Carbon dioxide in the critically ill: too much or too little of a good thing? Respir. Care, 2014, vol. 59, pp. 1597-1605.

19. Masterson C., Otulakowski G., Kavanagh B.P. Hypercapnia: clinical relevance and mechanisms of action. Curr. Opin. Crit. Care, 2015, vol. 21, pp. 7-12.

20. Metreveli R.E., Sahm K., Abdel-Misih R. et al. Major pancreatic resections for suspected cancer in a community-based teaching hospital: lessons learned. J. Surg. Oncol., 2007, vol. 95, pp. 201-206.

21. Neto A.S., Hemmes S.N., Barbas C.S. еt al. PROVE Network Investigators. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir. Med., 2016, vol. 4, pp. 272-280.

22. Neto A.S., Hemmes S.N., Barbas C.S. et al. PROVE Network Investigators. Protective versus conventional ventilation for surgery: A systematic review and individual patient data meta-analysis. Anesthesiology, 2015, vol. 123, pp. 66-78.

23. Neto A.S., Nagtzaam L., Schultz M.J. Ventilation with lower tidal volumes for critically ill patients without the acute respiratory distress syndrome: a systematic translational review and meta-analysis. Curr. Opin. Crit. Care, 2014, vol. 20, pp. 25-32.

24. Pearse R.M., Moreno R.P., Bauer P. et al. European Surgical Outcomes Study (EuSOS) group for the Trials groups of the European Society of Intensive Care Medicine and the European Society of Anaethesiology: Mortality after surgery in Europe: a 7 day cohort study. Lancet, 2012, vol. 380, pp. 1059-1065.

25. Putensen C., Theuerkauf N., Zinserling J. et al. Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Ann. Intern. Med., 2009, vol. 151, pp. 566-576.

26. Severgnini P., Selmo G., Lanza C. et al. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology, 2013, vol. 118, pp. 1307-1321.

27. Sinclair S.E., Kregnow D.A., Lamm W.J.E. et al. Hypercapnic acidosis is protective in an In vivo model of ventilator-induced lung injury. Am. J. Respir. Crit. Care Med., 2002, vol. 166, pp. 403-408.

28. Spriet L.L., Matsos C.G., Peters S.J. et al. Effects of acidosis on rat muscle metabolism and per formance during heavy exercise. Am. J. Physiol. Cell. Physiol., 1985, vol. 248, pp. C337–C347.

29. Takeshita K., Suzuki Y., Nishio K. et al. Hypercapnic acidosis attenuates edotoxin-induced nuclear factor-kappa B activation. Am. J. Respir. Cell. Mol. Biol., 2003, vol. 29, pp. 124-132.

30. Treschan T.A., Kaisers W., Schaefer M.S. et al. Ventilation with low tidal volumes during upper abdominal surgery does not improve postoperative lung function. Br. J. Anaesth., 2012, vol. 109, pp. 263-271.

31. Weingarten T.N., Whalen F.X., Warner D.O. et al. Comparison of two ventilatory strategies in elderly patients undergoing major abdominal surgery. Br. J. Anaesth., 2010, vol. 104, pp. 16-22.

32. Wrigge H., Uhlig U., Zinserling J. et al. The effects of different ventilatory settings on pulmonary and systemic inflammatory responses during major surgery. Anesth. Analg., 2004, vol. 98, pp. 775-781.


Review

For citations:


Rodionova L.N., Kuzkov V.V., Ilyina Ya.Yu., Ushakov A.A., Sokolova M.M., Fot E.V., Duberman B.L., Kirov M.Yu. PROTECTIVE VENTILATION AND POST-OPERATIVE RESPIRATORY COMPLICATIONS IN MAJOR PANCREATICODUODENAL SURGERY. Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2016;13(6):31-39. (In Russ.) https://doi.org/10.21292/2078-5658-2016-13-6-31-39



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)