Preview

Messenger of ANESTHESIOLOGY AND RESUSCITATION

Advanced search

Diagnosis and antimicrobial therapy of infections caused by polyresistant microorganisms (updated 2024)

https://doi.org/10.24884/2078-5658-2025-22-2-149-189

Abstract

Strains of microorganisms characterized by resistance to antimicrobial drugs used in medical organizations continue to spread in most regions of the world, including Russia. This naturally affects both the effectiveness of antimicrobial therapy and the tactics of its use not only in adults but also in children. The coronavirus pandemic has highlighted the growing problems with the treatment of invasive mycoses, the selection of dosage of antibacterial agents when using sorption and dialysis therapy methods. In combination with the registration of new antibacterial drugs ABSTRACT in Russia, this necessitated the need to make adjustments to the Methodological recommendations “Diagnostics and Antimicrobial Therapy of Infections Caused by Polyresistant Strains of Microorganisms” (2nd edition), prepared by a group of leading Russian experts in 2022 [1]. The presented version was approved in December 2024 at a joint meeting of representatives of public organizations: the Russian Association of Anesthesiologists-Intensivists, the Interregional public organization “Alliance of Clinical Chemotherapists and Microbiologists”, the Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC), the public organization “Russian Sepsis Forum”. These recommendations reflect the interdisciplinary consensus opinion on approaches to the diagnosis and antimicrobial therapy of infections caused by polyresistant microorganisms.

About the Authors

V. B. Beloborodov
Interregional public organization «Alliance of clinical chemotherapists and microbiologists»
Russian Federation

Dr. of Sci. (Med.), Professor, Vice-President

Moscow



O. V. Goloshchapov
Russian public organization «Association of Anesthesiologists Intensivists»
Russian Federation

Cand. of Sci. (Med.), Member of the Russian public organization «Association of Anesthesiologists-Intensivists»

Saint Petersburg



V. G. Gusarov
Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC)
Russian Federation

Dr. of Sci. (Med.), Associate Professor, Member of the Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC)

Moscow



A. V. Dekhnich
Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC)
Russian Federation

Cand. of Sci. (Med.), Member of the Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC)

Smolensk



M. N. Zamyatin
Russian public organization «Association of Anesthesiologists Intensivists»
Russian Federation

Dr. of Sci. (Med.), Professor, Member of the Coordinating Council

Moscow



K. N. Zolotukhin
Russian public organization «Association of Anesthesiologists Intensivists»
Russian Federation

Cand. of Sci. (Med.), Member of the Russian public organization «Association of Anesthesiologists-Intensivists»

Ufa



N. A. Zubareva
Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC); Public organization «Russian Sepsis Forum»
Russian Federation

Dr. of Sci. (Med.), Professor, Member of the Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC), Member of the Council of Experts 

Perm



S. K. Zyryanov
Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC)
Russian Federation

Dr. of Sci. (Med.), Professor, Member of the Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC)

Moscow



D. A. Kamyshova
Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC)
Russian Federation

Member of the Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC)

Moscow



N. N. Klimko

Russian Federation


R. S. Kozlov
Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC)
Russian Federation

Dr. of Sci. (Med.), Corresponding Member of the RAS, Professor, President of the Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC)

Smolensk



V. V. Kulabukhov
Public organization «Russian Sepsis Forum»; Russian public organization «Association of Anesthesiologists Intensivists»
Russian Federation

Cand. of Sci. (Med.), Associate Professor, President of the Interregional Public organization «Russian Sepsis Forum» (RSF), Member of the Coordinating Council

Moscow



N. V. Matinyan
Public organization «Russian Sepsis Forum»
Russian Federation

Dr. of Sci. (Med.), Member of the Council of Experts

Moscow



M. A. Petrushin
Russian public organization «Association of Anesthesiologists Intensivists»
Russian Federation

Member of the Coordinating Council

Tver



Yu. S. Polushin
Russian public organization «Association of Anesthesiologists Intensivists»
Russian Federation

Dr. of Sci. (Med.), Professor, Academician of the RAS, President of the Russian public organization «Association of Anesthesiologists-Intensivists»

Saint Petersburg



D. A. Popov
Interregional public organization «Alliance of clinical chemotherapists and microbiologists»; Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC); Public organization «Russian Sepsis Forum»
Russian Federation

Dr. of Sci. (Med.), Professor, Academician of the RAS, Member of the Presidium of the Board; Member of the Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC); Member of the Council of Experts

Moscow



A. V. Pyregov
Russian public organization «Association of Anesthesiologists Intensivists»
Russian Federation

Dr. of Sci. (Med.), Professor, Member of the Coordinating Council 



V. A. Rudnov
Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC); Public organization «Russian Sepsis Forum»; Russian public organization «Association of Anesthesiologists Intensivists»
Russian Federation

Dr. of Sci. (Med.), Professor, Vice-President; Chairman of the Council of Experts; Member of the Coordinating Council

Ekaterinburg



S. V. Sidorenko
Interregional public organization «Alliance of clinical chemotherapists and microbiologists»
Russian Federation

Corresponding Member of the RAS, Professor, Vice-President

Saint Petersburg



D. V. Sokolov
Russian public organization «Association of Anesthesiologists Intensivists»
Russian Federation

Member of the Coordinating Council

Saint Petersburg



I. N. Sychev
Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC); Public organization «Russian Sepsis Forum»
Russian Federation

Cand. of Sci. (Med.), Member of the Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC), member of the Council

Moscow



I. V. Shlyk
Russian public organization «Association of Anesthesiologists Intensivists»
Russian Federation

Dr. of Sci. (Med.), Professor, Vice-President

Saint Petersburg



M. V. Eydelstein
Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC)
Russian Federation

Dr. of Sci. (Biol.), Member of the Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC)

Smolensk



S. V. Yakovlev
Interregional public organization «Alliance of clinical chemotherapists and microbiologists»
Russian Federation

Dr. of Sci. (Med.), Professor, President of the interregional public organization «Alliance of clinical chemotherapists and microbiologists»

Moscow



References

1. Beloborodov V. B., Goloshchapov O. V., Gusarov V. G. et al. Methodological recommendations “Diagnosis and antimicrobial therapy of infections caused by multidrug-resistant strains of microorganisms” (update 2022). Bulletin of Anesthesiology and Reanimatology, 2022, vol. 19, no. 2, pp. 84–114. (In Russ.). https://doi.org/10.21292/2078-5658-2022-19-2-84-114.

2. Belotserkovsky B. Z., Kruglov A. N., Ni O. G. et al. Etiologic structure of infections in surgical intensive care unit patients in the post-cohort era. (In Russ.). Clinical Microbiology and Antimicrobial Chemotherapy, 2024, vol. 26, no. 2, pp. 124–140. https://doi.org/10.36488/cmac.2024.2.124-140.

3. Diagnosis and treatment of mycoses in intensive care units: Russian recommendations / eds by N. N. Klimko. 2nd ed. supplement and revision. Moscow, Pharmtek, 2015, 96 p. (In Russ.).

4. Karpov O. E., Gusarov V. G., Zamyatin M. N. et al. Management of antibiotic resistance in the hospital: current realities and prospects. Clinical Microbiology and Antimicrobial Chemotherapy, 2020, vol. 22, no. 4, pp. 277–286. (In Russ.). https://doi.org/10.36488/cmac.2020.4.277-286.

5. Naygovzina N. V., Popova A. Yu. E. et al. Optimization of the system of measures to control and prevent infections associated with the provision of medical care in the Russian Federation. ORGZDRAV: News. Opinions. Training. Vestnik VSHOUZ, 2018, no. 1, pp. 17–26. (In Russ.). https://doi.org/10.24411/2411-8621-2018-00002.

6. Determination of sensitivity to antimicrobial agents. Clinical recommendations. Internet-portal of the chief freelance specialist of the Ministry of Health of Russia on clinical microbiology and antimicrobial resistance. URL: https://www.antibiotic.ru/files/321/clrec-dsma2021.pdf (accessed: 20.02.25). (In Russ.).

7. Action Plan for 2019–2024 for the implementation of the Strategy for the Prevention of the Spread of Antimicrobial Resistance in the Russian Federation for the period until 2030. Approved by the Order of the Government of the Russian Federation No. 604-r dated March 30, 2019. URL: https://www.garant.ru/products/ipo/prime/doc/71677266 (accessed: 20.02.25). (In Russ.).

8. Popov D. A. Comparative characteristics of modern methods of determination of carbapenemase production. Clinical Microbiology and Antimicrobial Chemotherapy, 2019, vol. 21, no. 2, pp. 125–133. (In Russ.). https://doi.org/10.36488/cmac.2019.2.125-133.

9. A practical guide to antibiotic resistance monitoring using the AMRcloud platform”. URL: https://monitoring.amrcloud.net/docs (accessed: 20.02.25). (In Russ.).

10. SCAT program (Strategy for Control of Antimicrobial Therapy) in inpatient care: Russian clinical recommendations / eds by S. V. Yakovlev, N. I. Briko, S. V. Sidorenko et al. Moscow, Pero Publishing House, 2018, 156 P. URL: http://antimicrob.net/wp-content/uploads/skat.pdf (accessed: 20.02.25). (In Russ.).

11. Rogacheva Y. A., Popova M. O., Sinyayev A. A. et al. Colonization of non-sterile sites by multidrug-resistant Gram-negative bacteria and its role in the development of bloodstream infections in recipients of allogeneic hematopoietic stem cell transplantation. Clinical Microbiology and Antimicrobial Chemotherapy, 2022, vol. 24, no. 4, pp. 375–382. (In Russ.). https://doi.org/10.36488/cmac.2022.4.375-382.

12. Analytical report of the Methodological Verification Center on antimicrobial resistance “State of antibiotic resistance of bacterial pathogens in the Russian Federation”, 2024. URL: https://www.antibiotic.ru/files/406/analiticheskij_otchet_202.pdf (accessed: 20.02.25). (In Russ.).

13. Sepsis in children with oncologic diseases: educational manual / N. V. Matinyan, N. Y. Epifanova, T. V. Gorbunova et al. Moscow, GEOTAR-Media, 2023, 48 P. https://doi.org/10.33029/9704-7973-5-SCC-2023-1-48. (In Russ.).

14. Eidelstein M. V., Shaidullina E. R., Ivanchik N. V. et al. Antibiotic resistance of clinical isolates of Klebsiella pneumoniae and Escherichia coli in Russian hospitals: results of a multicenter epidemiological study. Clinical Microbiology and Antimicrobial Chemotherapy, 2024, vol. 26, no. 1, pp. 67–78. (In Russ.). http://dx.doi.org/10.36488/cmac.2024.1.67-78.

15. Shteinberg L. L., Upnitsky A. A., Belousov Y. B. Features of the use of carbapenems in the treatment of nosocomial pneumonia. Medical Business, 2014, no. 1, pp. 27–32. https://med-click.ru/uploads/files/docs/osobennosti-primeneniya-karbapenemov-v-lechenii-nozokomialnoy-pnevmonii.pdf (accessed: 20.02.25). (In Russ.).

16. Yakovlev S. V., Suvorova M. P., Beloborodov V. B. et al. Prevalence and clinical significance of nosocomial infections in Russian medical institutions: ERGINI study. Antibiotics and Chemotherapy, 2016, vol. 61, pp. 5–6. (In Russ.).

17. URL: https://www.antibiotics-chemotherapy.ru/jour/article/view/669/669?locale=ru_RU (accessed 20.02.25).

18. Aaftab G. P., Patil A. B., Medegar S. Multivariate analysis of risk factors for ESBL and AmpC producing Esche-richia coli and Klebsiella pneumoniae at a Tertiary Care Hospital in Karnataka: A case control study. Indian Journal of Microbiology Research, 2018, vol. 5, no. 1, pp. 1–6. https://doi.org/10.18231/2394-5478.2018.0001.

19. Aloush V., Navon-Venezia, S., Seigman-Igra Y. et al. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrobial agents and chemotherapy, 2006, vol. 50, no. 1, pp. 43–48. https://doi.org/10.1128/aac.50.1.43-48.2006.

20. Ashley C., Dunleavy A. The renal drug handbook: the ultimate prescribing guide for renal practitioners. 5th edition, CRC Press Taylor & Francis Group, 2019 Paperback, 1108 pp. https://doi.org/10.1201/9780429460418.

21. Barbier F., Hraiech S., Kernéis S. et al. Rationale and evidence for the use of new beta-lactam/beta-lactamase inhibitor combinations and cefiderocol in critically ill patients. Ann. Intensive Care, 2023, vol. 13, no. 65. https://doi.org/10.1186/s13613-023-01153-6.

22. Baptista L., Moura I., Silva C. M. et al. What is new in augmented renal clearance in septic patients. Curr Infect Dis Rep, 2023, no. 25, pp. 255–272. https://doi.org/10.1007/s11908-023-00816-6.

23. Bassetti M., Righi E. New antibiotics and antimicrobial combination therapy for the treatment of gram-negative bacterial infections. Current opinion in critical care, 2015, vol. 21, no. 5, pp. 402–411. https://doi.org/10.1097/MCC.0000000000000235.

24. Bassetti M., Righi E., Carnelutti A. Bloodstream infections in the intensive care unit. Virulence, 2016, vol. 7, no. 3, pp. 267–279. https://doi.org/10.1080/21505594.2015.1134072.

25. Bush K., Jacoby G. A., Medeiros A. A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrobial agents and chemotherapy, 1995, vol. 39, no. 6, pp. 1211–1233. https://doi.org/10.1128/aac.39.6.1211.

26. Callejo-Torre F., Bouza J. M. E., Astigarraga P. O. et al. Risk factors for methicillin-resistant Staphylococcus aureus colonisation or infection in intensive care units and their reliability for predicting MRSA on ICU admission. Europe, 2016, vol. 5, pp. 1–9. PMID: 27668900.

27. Cao B., Wang H., Sun H. et al. Risk factors and clinical outcomes of nosocomial multi-drug resistant Pseudomonas aeruginosa infections. Journal of Hospital Infection, 2004, vol. 57, no. 2, pp. 112–118. https://doi.org/10.1016/j.jhin.2004.03.021.

28. Cattaneo C., di Blasi R., Skert C. et al. Bloodstream infections in haematological cancer patients colonized by multidrugresistant bacteria. Ann Hematol, 2018, vol. 97, no. 9, pp. 1717–1726. https://doi.org/10.1007/s00277-018-3341-6.

29. Chauzy A., Gregoire N., Ferrandière M. et al. Population pharmacokinetic/pharmacodynamic study suggests continuous infusion of ceftaroline daily dose in ventilated critical care patients with early-onset pneumonia and augmented renal clearance. Journal of Antimicrobial Chemotherapy, 2022, vol. 77, no. 11, pp. 3173–3179. https://doi.org/10.1093/jac/dkac299.

30. Cornely O., Alastruey-Izquierdo A., Arenz D. et al. Global guideline for the diagnosis and management of mucormycosis: An initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. The Lancet Infect Dis, 2019, vol. 12, pp. 405–421. https://doi.org/10.1016/s1473-3099(19)30312-3.

31. De Pascale G., Montini L., Pennisi M. A. et al. High dose tigecycline in critically ill patients with severe infections due to multidrug-resistant bacteria. Critical Care, 2014, vol. 18, no. 3, pp. 90. https://doi.org/10.1186/cc13858.

32. Dellit T. H., Owens R. C., McGowan J. E. et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardshiP. Clinical Infectious Diseases, 2007, vol. 44, no. 2, pp. 159–177. https://doi.org/10.1086/510393.

33. Diao H., Lu G., Zhang Y. et al. Risk factors for multidrug-resistant and extensively drug-resistant Acinetobacter baumannii infection of patients admittedin ICU: a systematic review and meta-analysis. Journal of Hospital Infection, 2024, vol. 149, pp. 77–87. https://doi.org/10.1016/j.jhin.2024.04.013.

34. European Centre for Disease Prevention and Control. Point prevalence survey of healthcare associated infections and antimicrobial use in European acute care hospitals. Stockholm: ECDC, 2024.

35. Evans L., Rhodes A., Alhazzani W. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2021. Intensive Care Med, 2021, vol. 47, no. 11, pp. 1181–1247. https://doi.org/10.1007/s00134-021-06506-y.

36. Duin D., Arias C. A., Komarow L. et al. Molecular and clinical epidemiology of carbapenem-resistant Enterobacterales in the USA (CRACKLE-2): a prospective cohort study. The Lancet Infectious Diseases, 2020, vol. 20, no. 6, pp. 731–741. https://doi.org/10.1016/s1473-3099(19)30755-8.

37. European Centres for Disease Prevention and Control (ECDC). Antimicrobial resistance surveillance in Europe 2011. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). URL: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2011 (accessed: 20.02.25).

38. Falcone M., Russo A., Venditti M. et al. Considerations for higher doses of daptomycin in critically ill patients with methicillin-resistant Staphylococcus aureus bacteremia. Clinical infectious diseases, 2013, vol. 57, no. 11, pp. 1568–1576. https://doi.org/10.1093/cid/cit582.

39. Gazin M., Lammens C., Goossens H. et al. Evaluation of GeneOhm VanR and Xpert vanA/vanB molecular as-says for the rapid detection of vancomycin-resistant enterococci. European journal of clinical microbiology & infectious diseases, 2012, vol. 31, no. 3, pp. 273–276. https://doi.org/10.1007/s10096-011-1306-y.

40. Ghibu L., Miftode E., Teodor A. et al. Risk factors for Pseudomonas aeruginosa infections, resistant to carbapenem. Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi, 2010, vol. 114, no. 4, pp. 1012–1016. PMID: 21500452.

41. Giske C. G., Gezelius L., Samuelsen O. et al. A sensitive and specific phenotypic assay for detection of metallo‐β‐lactamases and KPC in Klebsiella pneumoniae with the use of meropenem disks supplemented with aminophenylboronic acid, dipicolinic acid and cloxacillin. Clinical microbiology and infection, 2011, vol. 17, no. 4, pp. 552–556. https://doi.org/10.1111/j.1469-0691.2010.03294.x.

42. Gniadkowski M. Evolution of extended‐spectrum β‐lactamases by mutation. Clinical microbiology and infection, 2008, vol. 14, pp. 11–32. https://doi.org/10.1111/j.1469-0691.2007.01854.x.

43. Gomez F., Veita J., Laudanski K. Antibiotics and ECMO in the Adult Population – Persistent Challenges and Practical Guides. Antibiotics, 2022, vol. 11, no. 3, pp. 338. https://doi.org/10.3390/antibiotics11030338.

44. Goyal D., Dean N., Neill S. et al. Risk factors for community-acquired extended-spectrum beta-lactamase-producing enterobacteriaceae infections – a retrospective study of symptomatic urinary tract infections. Open forum infectious diseases, US: Oxford University Press, 2019, vol. 6, no. 2, ofy357. https://doi.org/10.1093/ofid/ofy357.

45. Grabein B., Graninger W., Baño J. et al. Intravenous fosfomycin-back to the future. Systematic review and meta-analysis of the clinical literature. Clinical Microbiology and Infection, 2017, vol. 23, no. 6, pp. 363–372. https://doi.org/10.1016/j.cmi.2016.12.005.

46. Grewal A., Thabet P., Dubinsky S. et al. Antimicrobial pharmacokinetics and dosing in critically ill adults receiving prolonged intermittent renal replacement therapy: A systematic review. Pharmacotherapy, 2023, vol. 43, pp. 1206–1220. https://doi.org/10.1002/phar.2861.

47. Greissl C., Saleh A., Hamprecht A. Rapid detection of OXA-48-like, KPC, NDM, and VIM carbapenemases in Enterobacterales by a new multiplex immunochromatographic test. European Journal of Clinical Microbiology & Infectious Diseases, 2019, vol. 38, no. 2, pp. 331–335. https://doi.org/10.1007/s10096-018-3432-2.

48. Haley C. C., Mittal D., LaViolette A. et al. Methicillin-resistant Staphylococcus aureus infection or colonization present at hospital admission: multivariable risk factor screening to increase efficiency of surveillance culturing. Journal of clinical microbiology, 2007, vol. 45, no. 9, pp. 3031–3038. https://doi.org/10.1128/JCM.00315-07.

49. Hahn J., Choi J. H., Chang M. J. Pharmacokinetic changes of antibiotic, antiviral, antituberculosis and antifungal agents during extracorporeal membrane oxygenation in critically ill adult patients. J Clin Pharm Ther, 2017, vol. 42, no. 6, pp. 661–671. https://doi.org/10.1111/jcpt.12636.

50. Hovan M. R., Narayanan N., Cedarbaum V. et al. Comparing mortality in patients with carbapenemase-producing carbapenem resistant enterobacterales and non-carbapenemase-producing carbapenem resistant enterobacteralesbacteremia. Diagnostic Microbiology and Infectious Disease, 2021, vol. 101, no. 4, pp. 115505. https://doi.org/10.1016/j.diagmicrobio.2021.115505.

51. Kao K. C., Chen C. B., Hu H. C. et al. Risk factors of methicillin-resistant Staphylococcus aureus infection and correlation with nasal colonization based on molecular genotyping in medical intensive care units: a prospective observational study. Medicine, 2015, vol. 94, no. 28, pp. 1100. https://doi.org/10.1097/md.0000000000001100.

52. Kanji S., Roger C., Taccone F. S., Muller L. Practical considerations for individualizing drug dosing in critically ill adults receiving renal replacement therapy. Pharmacotherapy, 2023, no. 43, pp. 1194–1205. https://doi.org/10.1002/phar.2858.

53. Kim M., Mahmood M., Estes L. L. et al. A narrative review on antimicrobial dosing in adult critically ill patients on extracorporeal membrane oxygenation. Crit Care, 2024, vol. 28, no. 1, pp. 326. https://doi.org/10.1186/s13054-024-05101-z.

54. Mathur S., Jackson C., Urus H. et al. A comparison of five paediatric dosing guidelines for antibiotics. Bull World Health Organ, 2020, vol. 98, no. 6, pp. 406–412F. https://doi.org/10.2471/blt.19.234310.

55. Merchant S., Proudfoot E. M., Quadri H. N. et al. Risk factors for Pseudomonas aeruginosa infections in Asia-Pacific and consequences of inappropriate initial antimicrobial therapy: A systematic literature review and meta-analysis. Journal of global antimicrobial resistance, 2018, vol. 14, pp. 33–44. https://doi.org/10.1016/j.jgar.2018.02.005.

56. Nicolas-Chanoine M. H., Vigan M., Laouenan C. et al. Risk factors for carbapenem-resistant Enterobacteriaceae infections: a French case-control-control study. European Journal of Clinical Microbiology & Infectious Diseases, 2019, vol. 38, no. 2, pp. 383–393. https://doi.org/10.1007/s10096-018-3438-9.

57. Ohmagari N., Hanna H., Graviss L. et al. Risk factors for infections with multidrug‐resistant Pseudomonas aeruginosa in patients with cancer. Cancer, 2005, vol. 104, no. 1, pp. 205–212. https://doi.org/10.1002/cncr.21115.

58. Pappas P. G., Kauffman C. A., Andes D. R. et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clinical Infectious Diseases, 2016. –vol. 62, e1–50. https://doi.org/10.1093/cid/civ933.

59. Paul M., Carrara E., Retamar P. et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clinical Microbiology and Infection, 2022, vol. 28, no. 4, pp. 52–547. https://doi.org/10.1016/j.cmi.2021.11.025.

60. Platteel T. N., Stuart J. C., Voets G. M. et al. Evaluation of a commercial microarray as a confirmation test for the presence of extended‐spectrum β‐ lactamases in isolates from the routine clinical setting. Clinical Microbiology and Infection, 2011, vol. 17, no. 9, pp. 1435–1438. https://doi.org/10.1111/j.1469-0691.2011.03567.x.

61. Pistolesi V., Morabito S., Di Mario F. et al. A guide to understanding anti-microbial drug dosing in critically ill patients on renal replacement therapy. Antimicrob Agents Chemother, 2019, vol. 63, no. 8, pp. e00583-19. https://doi.org/10.1128/aac.00583-19.

62. Predic M., Delano J. P., Tremblay E. et al. Risk factors for carbapenem-resistant Enterobacteriaceae infection. American Journal of Infection Control, 2017, vol. 45, no. 6, pp. S14. https://doi.org/10.1007/s10096-018-3438-9.

63. Queenan A. M., Bush K. Carbapenemases: the versatile β-lactamases. Clinical microbiology reviews, 2007, vol. 20, no. 3, pp. 440–458. https://doi.org/10.1128/cmr.00001-07.

64. Red Book. 29 Edition; American Academy of Pediatrics, 2012, 1058 pp. ISBN-10: 158110703X. https://doi.org/10.1542/9781581107357.

65. Roberts J. A., Bellomo R., Cotta M. O. et al. Machines that help machines to help patients: optimising antimicrobial dosing in patients receiving extracorporeal membrane oxygenation and renal replacement therapy using dosing software. Intensive Care Med, 2022, vol. 48, pp. 1338–1351. https://doi.org/10.1007/s00134-022-06847-2.

66. Ruiz-Ramos J., Gras-Martín L., Ramírez P. Antimicrobial pharmacokinetics and pharmacodynamics in critical care: adjusting the dose in extracorporeal circulation and to prevent the genesis of multiresistant bacteria. Antibiotics, 2023, no. 12, pp. 475. https://doi.org/10.3390/antibiotics12030475.

67. Rybak M. J., Pharm D., Le J. et al. Therapeutic monitoring of Vancomycin for serious methicillin-resistant Staphy-lococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. American Journal of Health-System Pharmacy, 2020, vol. 77, is. 11, pp. 835–864. https://doi.org/10.1093/ajhp/zxaa036.

68. Silva С. М., Jo˜ao Baptista Р., Santos I, Martins P. Recommended antibiotic dosage regimens in critically ill patients with augmented renal clearance: A Systematic Review. International Journal of Antimicrobial Agents, 2022, vol. 59, no. 5, pp. 106569. https://doi.org/10.1016/j.ijantimicag.2022.106569.

69. Sfeir M. M., Hayden J. A., Fauntleroy K. A. et al. EDTA-Modified carbapenem inactivation method: a phenotypic method for detecting metallo-βlactamase-producing enterobacteriaceae. Journal of clinical microbiology, 2019, vol. 57, no. 5, pp. e01757–18. https://doi.org/10.1128/jcm.01757-18.

70. Søraas A., Sundsfjord A., Sandven I. et al. Risk factors for community-acquired urinary tract infections caused by ESBL-producing Enterobacteriaceae-a case-control study in a low prevalence country. PloS one, 2013, vol. 8, no. 7, e69581. https://doi.org/10.1371/journal.pone.0069581.

71. Taccone F. S., Laterre P. F., Spapen H. et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Critical care, 2010, vol. 14, no. 2, pp. R53. https://doi.org/10.1186/cc8945.

72. The Sanford guide to antimicrobial therapy 2014. 44 Edition, 243 pp. ISBN-10: 1930808801. ISBN-13: 978-1930808782.

73. Tuon F. F., Kruger M., Terreri M. et al. Klebsiella ESBL bacteremia-mortality and risk factors. Brazilian Journal of Infectious Diseases, 2011, vol. 15, no. 6, pp. 594–598. https://doi.org/10.1590/s1413-86702011000600016.

74. Udy A. A., Baptista J. P., Lim N. L. et al. Augmented renal clearance in the ICU: results of a multicenter observational study of renal function in critically ill patients with normal plasma creatinine concentrations. Critical care medicine, 2014, vol. 42, no. 3, pp. 520–527. https://doi.org/10.1097/ccm.0000000000000029.

75. Ullmann A. J., Aguado J. M., Arikan-Akdagli S. et al. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect, 2018, vol. 24, Suppl 1, e1–e38. https://doi.org/10.1016/j.cmi.2018.01.002.

76. Vading M., Samuelsen Ø., Haldorsen B. et al. Comparison of disk diffusion, Etest and VITEK2 for detection of carbapenemase producing Klebsiella pneumoniae with the EUCAST and CLSI breakpoint systems. Clinical Microbiology and Infection, 2011, vol. 17, no. 5, pp. 668–674. https://doi.org/10.1111/j.1469-0691.2010.03299.x.

77. Van der Zwaluw K., de Haan A., Pluister G. N. et al. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PloS one, 2015, vol. 10, no. 3, pp. e0123690. https://doi.org/10.1371/journal.pone.0123690.

78. Van Dijk K., Voets G. M., Scharringa J. et al. A disc diffusion assay for detection of class A, B and OXA-48 carbapenemases in Enterobacteriaceae using phenyl boronic acid, dipicolinic acid and temocillin. Clinical Microbiology and Infection, 2014, vol. 20, no. 4, pp. 345–349. https://doi.org/10.1111/1469-0691.12322.

79. Wener K. M., Schechner V., Gold H. S. et al. Treatment with fluoroquinolones or with β-lactam-β-lactamase inhibi-tor combinations is a risk factor for isolation of extended-spectrum-β-lactamase-producing Klebsiella species in hospitalized patients. Antimicrobial agents and chemotherapy, 2010, vol. 54, no. 5, pp. 2010–6. https://doi.org/10.1128/aac.01131-09.

80. WHO: Antimicrobial resistance: global report on surveillance, 2014. https://apps.who.int/iris/handle/10665/112642 (accessed: 20.02.25).

81. Willemsen I., Overdevest I., al Naiemi N. et al. New diagnostic microarray (Check-KPC ESBL) for detection and identification of extended-spectrum beta-lactamases in highly resistant Enterobacteriaceae. Journal of clinical microbiology, 2011, vol. 49, no. 8, pp. 2985–2987. https://doi.org/10.1128/jcm.02087-10.

82. Yu Z., Pang X., Wu X. et al. Clinical outcomes of prolonged infusion (extended infusion or continuous infusion) versus intermittent bolus of meropenem in severe infection: A meta-analysis. PloS one, 2018, vol. 13, no. 7, e0201667. https://doi.org/10.1371/journal.pone.0201667.

83. Zaha D. C., Kiss R., Hegedűs C. et al. Recent advances in investigation, prevention, and management of healthcare-associated infections (hais): resistant multidrug strain colonization and its risk factors in an Intensive Care Unit of a University Hospital. BioMed Research International, 2019, vol. 2019, pp. 2510875. https://doi.org/10.1155/2019/2510875.

84. Zamyatin M., Gusarov V., Petrova N. et al. Results of antimicrobial stewardship programme implementation in multidisciplinary hospital. ICU Management & Practice, 2018, vol. 18, no. 2, pp. 125–127. URL: https://healthmanagement.org/c/icu/issuearticle/results-of-antimicrobial-stewardship-programme-implementation-in-multidisciplinary-hospitai (accessed: 20.02.25).


Review

For citations:


Beloborodov V.B., Goloshchapov O.V., Gusarov V.G., Dekhnich A.V., Zamyatin M.N., Zolotukhin K.N., Zubareva N.A., Zyryanov S.K., Kamyshova D.A., Klimko N.N., Kozlov R.S., Kulabukhov V.V., Matinyan N.V., Petrushin M.A., Polushin Yu.S., Popov D.A., Pyregov A.V., Rudnov V.A., Sidorenko S.V., Sokolov D.V., Sychev I.N., Shlyk I.V., Eydelstein M.V., Yakovlev S.V. Diagnosis and antimicrobial therapy of infections caused by polyresistant microorganisms (updated 2024). Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2025;22(2):149-189. (In Russ.) https://doi.org/10.24884/2078-5658-2025-22-2-149-189



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5658 (Print)
ISSN 2541-8653 (Online)