Microcirculation dysfunction in critical conditions (literature review)
https://doi.org/10.24884/2078-5658-2024-21-6-116-121
Abstract
A key aspect of the review is the emphasis on the state of capillary blood flow in critical conditions. The review summarizes current information on the role of endothelium in the regulation of microcirculation, the manifestation of acute endothelial dysfunction in critically ill patients and methods for assessing microcirculation. The main methods of treatment used in intensive therapy, which can affect microcirculation, are highlighted, and the feasibility of developing and putting into practice methods for constant monitoring of the state of microcirculation is justified.
About the Author
E. E. Ladozhskaya-GapeenkoRussian Federation
Ekaterina E. Ladozhskaya-Gapeenko, Cand. of Sci. (Med.), Anesthesiologist and Intensivist of Anesthesiology and Intensive Care Department № 2, Junior Research Fellow of the Research Clinical Center of Anesthesiology and Intensive Care
6/8, L’va Tolstogo str., Saint Petersburg, 197022
References
1. Binggeli C., Spieker L. E., Corti R. et al. Statins enhance postischemic hyperemia in the skin circulation of hypercholesterolemic patients: a monitoring test of endothelial dysfunction for clinical practice? // J. Am. Coll. Cardiol. – 2003. – Vol. 42, № 1. – P. 71–77. https://doi.org/10.1016/s0735-1097(03)00505-9.
2. Boerma E. C., Koopmans M., Konijn A. et al. Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: a double-blind randomized placebo-controlled trial // Crit. Care Med. – 2010. – Vol. 38. – P. 93–100. https://doi.org/10.1097/CCM. 0b013e3181b02fc1.
3. Chatterjee S. Endothelial mechanotransduction, redox signaling and the regulation of vascular inflammatory pathways // Front Physiol. – 2018. – Vol. 9. – P. 524. https://doi.org/10.3389/fphys.2018.00524.
4. Coon B. G., Baeyens N., Han J. et al. Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex // J Cell Biol. – 2015. – Vol. 208, № 7. – P. 975–986. https://doi.org/10.1083/jcb.201408103.
5. De Backer D., Creteur J., Preiser J. C. et al. Microvascular blood flow is altered in patients with sepsis // Am. J. Respir. Crit. Care Med. – 2002. – Vol. 166, № 1. – P. 98–104. https://doi.org/10.1164/rccm.200109-016oc.
6. De Backer D., Creteur J., Dubois M. J. et al. The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects // Crit. Care Med. – 2006. – Vol. 34. – P. 403–408. https://doi.org/10.1097/01.CCM.0000198107.61493.5A.
7. Den Uil C. A., Caliskan K., Lagrand W. K. et al. Dose-dependent benefit of nitroglycerin on microcirculation of patients with severe heart failure // Intensive Care Med. – 2009. – Vol. 35. – P. 1893–1899. https://doi.org/10.1007/s00134-009-1591-4.
8. Dubin A., Pozo M. O., Casabella C. A. et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study // Crit. Care. – 2009. – Vol. 13. – P. R92. https://doi.org/10.1186/ cc7922.
9. Edul V. S., Ferrara G., Pozo M. O. et al. Failure of nitroglycerin (glyceryl trinitrate) to improve villi hypoperfusion in endotoxaemic shock in sheep // Crit Care Resusc. – 2011. – Vol. 13, № 4. – P. 252–261. PMID: 22129287.
10. Enrico C., Kanoore Edul V. S., Vazquez A. R. et al. Systemic and microcirculatory effects of dobutamine in patients with septic shock // J Crit Care. – 2012. – Vol. 27, № 6. – P. 630–8. https://doi.org/10.1016/j.jcrc.2012.08.002.
11. Georger J. F., Hamzaoui O., Chaari A. et al. Restoring arterial pressure with norepinephrine improves muscle tissue oxygenation assessed by near-infrared spectroscopy in severely hypotensive septic patients // Intensive Care Med. – 2010. – Vol. 36. – P. 1882–1889. https://doi.org/10.1007/s00134-010-2013-3.
12. Ghiadoni L., Versari D., Giannarelli C. et al. Non-invasive diagnostic tools for investigating endothelial dysfunction // Curr. Pharm. Des. – 2008. – Vol.14, № 35. – P. 3715–3722. https://doi.org/10.2174/138161208786898761.
13. Hamlin S. K., Strauss P. Z., Chen H. M. et al. Microvascular fluid [resuscitation in circulatory shock // Nurs Clin North Am. – 2017. – Vol. 52, № 2. – P. 291–300. https://doi.org/10.1016/j.cnur.2017.01.006.
14. Ihlemann N., Rask-Madsen C., Perner A. et al. Tetrahydrobiopterin restores endothelial dysfunction induced by an oral glucose challenge in healthy subjects // Am J Physiol Heart Circ Physiol. – 2003. – Vol. 285, № 2. – P. H875–82. https://doi.org/10.1152/ajpheart.00008.2003.
15. Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation // Crit Care. – 2015. – Vol. 19, Suppl 3. – S8. https://doi.org/10.1186/cc14726.
16. Janotka M., Ostadal P. Biochemical markers for clinical monitoring of tissue perfusion // Mol Cell Biochem. – 2021. – Vol. 476, № 3. – P. 1313–1326. https://doi.org/10.1007/s11010-020-04019-8.
17. Kanoore Edul V. S., Ince C., Dubin A. What is microcirculatory shock? // Curr Opin Crit Care. – 2015. – Vol. 21, № 3. – P. 245–252. https://doi.org/10.1097/MCC.0000000000000196.
18. Kara A., Akin S., Ince C. Monitoring microcirculation in critical illness // Curr Opin Crit Care. – 2016. – Vol. 22, № 5. – P. 444–452. https://doi.org/10.1097/MCC.0000000000000335.
19. Li K., Li Y., Chen Y. et al. Ion channels remodeling in the regulation of vascular hyporesponsiveness during shock // Microcirculation. – 2024. – Vol. 31, № 6. – e12874. https://doi.org/10.1111/micc.12874.
20. Lipinska-Gediga M. Sepsis and septic shock – is a microcirculation a main player? // Anaesthesiol Intensive Ther. – 2016. – Vol. 48, № 4. – P. 261–265. https://doi.org/10.5603/AIT.a2016.0037.
21. Longden T. A., Zhao G., Hariharan A. et al. Pericytes and the control of blood flow in brain and heart // Annu Rev Physiol. – 2023. – Vol. 85. – P. 137–164. https://doi.org/10.1146/annurev-physiol-031522-034807.
22. Maglione M., Hermann M., Hengster P. et al. Tetrahydrobiopterin attenuates microvascular reperfusion injury following murine pancreas transplantation // Am. J. Transplant. – 2006. – Vol. 6. – P. 1551–1559. https://doi.org/10.1111/j.1600-6143.2006. 01345.x.
23. Merdji H., Levy B., Jung C. et al. Microcirculatory dysfunction in cardiogenic shock // Ann Intensive Care. – 2023. – Vol. 13, № 1. – P. 38. https://doi.org/10.1186/s13613-023-01130-z.
24. Miura K., Kashima H., Morimoto M. et al. Effects of unilateral arm warming or cooling on the modulation of brachial artery shear stress and endothelial function during leg exercise in humans // J Atheroscler Thromb. – 2021. – Vol. 28, № 3. – P. 271–282. https://doi.org/10.5551/jat.55731.
25. Morelli A., Donati A., Ertmer C. et al. Levosimendan for resuscitating the microcirculation in patients with septic shock: a randomized controlled study // Crit. Care. – 2010. – Vol. 14. – P. R232. https://doi.org/10.1186/cc9387.
26. Nakajima Y., Baudry N., Duranteau J. et al. Effects of vasopressin, norepinephrine, and L-arginine on intestinal microcirculation in endotoxemia // Crit. Care Med. – 2006. – Vol. 34. – P. 1752–1757. https://doi.org/10.1097/01.CCM.0000218812.73741.6C.
27. Nour S. Endothelial shear stress enhancements: a potential solution for critically ill Covid-19 patients // Biomed Eng Online. – 2020. – Vol. 19, № 1. – P. 91. https://doi.org/10.1186/s12938-020-00835-7.
28. Ospina-Tascon G., Neves A. P., Occhipinti G. et al. Effects of fluids on microvascular perfusion in patients with severe sepsis // Intensive Care Med. – 2010. – Vol. 36. – P. 949–955. – https://doi.org/10.1007/s00134-010-1843-3.
29. Ospina-Tascón G. A., Umaña M., Bermúdez W. F. et al. Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? // Intensive Care Med. – 2016. – Vol. 42, № 2. – P. 211–221. https://doi.org/10.1007/s00134-015-4133-2.
30. Patt B. T., Jarjoura D., Haddad D. N. et al. Endothelial dysfunction in the microcirculation of patients with obstructive sleep apnea // Am J Respir Crit Care Med. – 2010. – Vol. 182, № 12. – P. 1540–1555. https://doi.org/10.1164/rccm.201002-0162OC.
31. Pober J. S., Sessa W. C. Evolving functions of endothelial cells in inflammation // Nat. Rev. Immunol. – 2007. – Vol. 7, № 10. – P. 803–815. https://doi.org/10.1038/nri 2171.
32. Pottecher J., Deruddre S., Teboul J. L. et al. Both passive leg raising and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock patients // Intensive Care Med. – 2010. – Vol. 36. – P. 1867–1874. https://doi.org/10.1007/s00134-010-1966-6.
33. Potter D. R., Damiano E. R. The hydrodynamically relevant endothelial cell glycocalyx observed in vivo is absent in vitro // Circ Res. – 2008. – Vol. 102, № 7. – P. 770–776. https://doi.org/10.1161/CIRCRESAHA.107.160226.
34. Puissant C., Abraham P., Durand S. et al. Endothelial function: role, assessment and limits // J. Mal. Vasc. – 2014. – Vol. 39, № 1. – P. 47–56. – https://doi.org/10.1016/j.jmv.2013.11.004.
35. Roux E., Bougaran P., Dufourcq P. et al. Fluid shear stress sensing by the endothelial layer // Front Physiol. – 2020. – Vol. 11. – P. 861. https://doi. org/10.3389/fphys.2020.00861.
36. Schmidt T. S., Alp N. J. Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease // Clin Sci (Lond). – 2007. – Vol. 113, № 2. – P. 47–63. https://doi.org/10.1042/CS20070108.
37. Schwarte L. A., Picker O., Bornstein S. R. et al. Levosimendan is superior to milrinone and dobutamine in selectively increasing microvascular gastric mucosal oxygenation in dogs // Crit. Care Med. – 2005. – Vol. 33. – P. 135–142. https://doi.org/10.1097/01.
38. Secchi A., Wellmann R., Martin E. et al. Dobutamine maintains intestinal villus blood flow during normotensive endotoxemia: an intravital microscopic study in the rat // J. Crit. Care. – 1997. – Vol. 12. – P. 137–141. https://doi.org/10.1016/S0883-9441(97)90043-5.
39. Seetharaman S., Devany J., Kim H. R. et al. Mechanosensitive FHL2 tunes endothelial function // BioRxiv. – 2024. – Jun 17. https://doi.org/10.1101/2024.06.16.599227.
40. Taher R., Sara J. D., Toya T. et al. Secondary Raynaud’s phenomenon is associated with microvascular peripheral endothelial dysfunction // Microvasc Res. – 2020. – Vol. 132. – 104040. https://doi.org/10.1016/j.mvr.2020.104040.
41. Thooft A., Favory R., Salgado D. R. et al. Effects of changes in arterial pressure on organ perfusion during septic shock // Crit. Care. – 2011. – Vol. 15. – P. R222. – https://doi.org/10.1186/cc10462.
Review
For citations:
Ladozhskaya-Gapeenko E.E. Microcirculation dysfunction in critical conditions (literature review). Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2024;21(6):116-121. (In Russ.) https://doi.org/10.24884/2078-5658-2024-21-6-116-121