Сердечно-легочная реанимация у больных с ожирением

Ю. М. БОРОБОВ 12, А. А. САМСОНОВА 1, М. Н. ЛАПУШКИН 3, З. А. ЗАРИПОВА 1, М. О. СОЛОВЬЕВА 2, Д. Ю. АСТАХОВА 1

¹ФГБОУ ВО «Первый Санкт-Петербургский государственный университет им. акад. И. П. Павлова» МЗ РФ, Санкт-Петербург, РФ ²ГБУЗ «Городская больница Святого Великомученика Георгия», Санкт-Петербург, РФ

³ФГБУН «Физико-технический институт им. А. Ф. Иоффе Российской академии наук», Санкт-Петербург, РФ

Цель обзора: проанализировать имеющиеся в литературе данные о влиянии ожирения на различные аспекты проведения и исход мероприятий сердечно-легочной реанимации (СЛР). В настоящее время не существует особого стандарта проведения СЛР для пациентов с ожирением (избыточное или патологическое накопление жира с повышением индекса массы тела ≤ 30). Однако наличие у людей с избыточной массой тела значимых конституционально-анатомических и физиологических особенностей может явиться существенным фактором, способным негативно влиять как на ее проведение, так и на результат. Приведены результаты исследований, посвященных оценке эффективности применения наиболее существенных компонентов СЛР у больных с ожирением. Рассмотрены, в частности, вопросы проведения непрямого массажа и дефибрилляции, обеспечения проходимости дыхательных путей и вентиляции, обеспечения венозного доступа, фармакокинетики лекарственных средств, используемых во время СЛР. Показано, что проведение СЛР у пациентов с ожирением имеет свои особенности, которые пока не находят отражения в официальных документах и рекомендациях, но которые необходимо знать. Ключевые слова: сердечно-легочная реанимация, остановка сердца, массаж сердца, дефибрилляция, морбидное ожирение

Для цитирования: Боробов Ю. М., Самсонова А. А., Лапушкин М. Н., Зарипова З. А., Соловьева М. О., Астахова Д. Ю. Сердечно-легочная реанимация у больных с ожирением // Вестник анестезиологии и реаниматологии. – 2020. – Т. 17, № 1. – С. 21-28. DOI: 10.21292/2078-5658-2020-17-1-21-28

Cardiopulmonary resuscitation in obese patients

YU. M. BOROBOV 1-2, A. A. SAMSONOVA 1, M. N. LAPUSHKIN 3, Z. A. ZARIPOVA 1, M. O. SOLOVIEVA 2, D. YU. ASTAKHOVA 1

¹Pavlov First St.Petersburg State Medical University, St. Petersburg, Russia

²Saint George the Martyr Municipal Hospital, St. Petersburg, Russia

3 loffe Physico-Technical Institute of the Russian Academy of Sciences, St. Petersburg, Russia

Objective: an analysis of literature covering the effects of morbid obesity on various aspects of cardiopulmonary resuscitation (CPR) and its outcomes. Currently, there is no specific standard for CPR in morbidly obese patients (body mass index ≤ 30). Significant constitutional, anatomical, and physiological factors can lead to negative treatment outcomes in people with significant excess weight. The review presents study results evaluating the effectiveness of the essential components of CPR in obese patients. In particular, it discusses issues of indirect cardiac massage and defibrillation, airway management and ventilation, venous access, and pharmacokinetics of drugs used during CPR. It demonstrates that CPR in obese patients has its own characteristics not mentioned in official recommendations and guidelines.

Key words: cardiopulmonary resuscitation, cardiac arrest, cardiac massage, defibrillation, morbid obesity

For citations: Borobov Yu.M., Samsonova A.A., Lapushkin M.N., Zaripova Z.A., Solovieva M.O., Astakhova D.Yu. Cardiopulmonary resuscitation in obese patients. Messenger of Anesthesiology and Resuscitation, 2020, Vol. 17, no. 1, P. 21-28. (In Russ.) DOI: 10.21292/2078-5658-2020-17-1-21-28

Ожирение (избыточное или патологическое накопление жира с повышением индекса массы тела ≤ 30) становится серьезной социальной проблемой для большинства как развитых, так и развивающихся государств. Согласно данным Всемирной организации здравоохранения, в 2016 г. избыточную массу тела имели 1,9 млрд человек, или 39% жителей Земли, у 630 млн (13%) было диагностировано ожирение. В России доля взрослого населения с избыточной массой тела составляет, по разным оценкам, от 23,1 до 28,3% [5]. Если еще несколько десятилетий назад определение «эпидемия XXI века» в отношении данного состояния применялось чаще как яркая метафора, то в настоящее время имеются все основания для его использования.

Наличие ожирения ассоциировано со значительным повышением риска внезапной сердечной смерти по сравнению с лицами, не имеющими ожирения [10]. Среди факторов, предрасполагающих к внезапной сердечной смерти у лиц с избыточной массой тела, описаны обструктивное сонное апноэ [3, 13], увеличение длительности и дисперсии интервала QT [30], формирование характерных

структурных изменений миокарда (кардиомегалия, дилатация левого желудочка, гипертрофия кардиомиоцитов без признаков интерстициального фиброза) [9].

Действующие рекомендации Европейского совета по проведению сердечно-легочной реанимации (СЛР) не предполагают внесения коррекции в алгоритм оказания помощи больным с избыточной массой тела: «Изменений в последовательности действий при реанимации пациентов с ожирением нет, но выполнение эффективной СЛР может быть проблемой» [6]. Практический опыт подтверждает, что реанимация пациента с морбидным ожирением может вызвать затруднения даже у опытных специалистов.

Особенности проведения СЛР у тучного пациента абсолютно не освещены в отечественной литературе, за рубежом исследования по этой тематике только начинают появляться. Оценка возможного влияния конституционально-анатомических и физиологических особенностей, присущих людям с избыточной массой тела, на процесс проведения реанимационных мероприятий, а также на исход

СЛР в целом представляет в связи с этим определенный интерес.

1. Обеспечение циркуляции

Обеспечение адекватной перфузии органов, в первую очередь головного мозга и сердца, является, как известно, важнейшим компонентом проведения СЛР, что достигается путем компрессий грудной клетки при непрямом массаже сердца. При его проведении определяющую роль играют такие факторы, как глубина и скорость компрессий, место приложения усилий реанимирующего (точка компрессии), положение тела человека, которому оказывают помощь. У пациентов с высоким индексом массы тела (ИМТ) анатомия грудной клетки имеет определенные отличия от типичной в связи с увеличенной толщиной слоя подкожно-жировой клетчатки. Может ли это сказаться на механике компрессий?

Теоретически компрессии можно описать при помощи закона Гука, для наглядности рассмотрев сопротивление тканей грудной клетки как систему пружин, в которой у людей с ожирением появляется дополнительный модуль. Закон Гука — основной закон теории упругости, который гласит, что сила упругости, появляющаяся в момент деформации тела, пропорциональна удлинению тела и направлена противоположно движению частиц этого тела относительно других частиц при деформации.

Если прикладываемая к пациентам с ожирением и нормальной массой тела сила одинакова, то сжатие грудной клетки и в том и в другом случае должно происходить на одинаковую величину $\Delta x = 5$ см. Однако у тучных больных это не обеспечит эквивалентную компрессию сердца в связи с наличием у них амортизирующих свойств жировой ткани. Например, показано, что у пациента с жировой прослойкой по 2 см на передней и задней поверхностях грудной клетки для получения компрессии миокарда, аналогичной таковой у человека без ожирения, надо будет проводить непрямой массаж сердца с компрессиями на 2 см глубже, то есть сдавливать грудную клетку не на 5, а на 7 см [8].

Согласно исследованию P. Secombe et al., изучавших анатомические особенности грудной клетки 55 пациентов, имевших диагноз «морбидное ожирение» (средний ИМТ = 45.95 кг/м^2), по результатам компьютерно-томографического исследования грудной клетки выявлена прямая взаимосвязь между толщиной подкожно-жировой клетчатки и ИМТ [45]. Измерения производились на уровне 4-го реберного хряща и заключались в оценке расстояния спереди от поверхности кожи до грудины, сзади также от поверхности кожи до остистого отростка 3-го грудного позвонка. Средняя толщина подкожной жировой клетчатки составила спереди 36,5 мм, а на задней поверхности грудной клетки – 50,7 мм. Авторы исследования также предположили, что жировая ткань может влиять на эффективность компрессий. Подставив полученные в ходе исследования значения в уравнение закона Гука, можно

рассчитать, что необходимая глубина компрессий у таких лиц должна составлять около 9 см.

S. H. Lee et al., опираясь на данные КТ-исследования грудной клетки у взрослых людей с различным ИМТ, также пришли к выводу, что рекомендованная в настоящее время глубина компрессии 5 см не обеспечивает адекватного сжатия левого желудочка у пациентов с высоким ИМТ [33]. К этому заключению они пришли при анализе данных об изменении наружного и внутреннего переднезадних размеров грудной клетки и расчетной оценки деформации грудной клетки при моделировании компрессий грудины. При этом под наружным переднезадним размером грудной клетки авторы понимали перпендикуляр, проведенный от поверхности кожи на передней поверхности грудной клетки до поверхности кожи на спине, а под внутренним – перпендикуляр от задней поверхности грудины до передней поверхности тела позвонка.

Другим важнейшим параметром проведения непрямого массажа сердца является определение оптимального локуса приложения усилий, то есть точки компрессий. Оптимальная точка компрессий, согласно существующим рекомендациям, - центр грудной клетки, что обусловлено максимальным диаметром левого желудочка в этой зоне. Однако известно, что пациенты с абдоминальной формой ожирения имеют повышенное внутрибрюшное давление, что, особенно в положении лежа на спине, обусловливает высокое стояние диафрагмы по сравнению с людьми, не имеющими избыточной массы тела. Данная особенность может приводить к смещению максимального диаметра левого желудочка в краниальном направлении. Следовательно, у пациента с морбидным ожирением при проведении реанимации должна смещаться краниально и точка сжатия грудины по аналогии с тем, как это предусмотрено рекомендациями по СЛР у беременных женщин [34].

Необходимость изменения точки приложения усилий при проведении непрямого массажа сердца у больных с ожирением подтверждена в ретроспективном исследовании J. Lee et al. [32]. Они выполнили анализ 50 снимков людей с нормальным ИМТ и 50 снимков пациентов с избыточной массой тела (средний ИМТ = 36,4 кг/м²). Точка, соответствующая максимальному диаметру левого желудочка у больных с высоким ИМТ, оказалась расположена в среднем на 20 мм более краниально, чем обозначено в действующих рекомендациях.

Для оценки влияния ожирения на качество компрессий другая группа исследователей использовала три типа манекенов [48]. Первый манекен был стандартным (пациент без ожирения). Два других манекена были модифицированы с использованием специальной полимерной пены, имитировавшей по своим свойствам жир. Их создавали по слепкам реальных людей с избыточной массой тела. Второй манекен имел параметры, характерные для пациента с ИМТ > 30 кг/м², но < 40 кг/м², а третий

имитировал больного с морбидным ожирением (ИМТ > 40 кг/м²). В исследование был вовлечен 61 квалифицированный медицинский работник, каждый выполнял по 2 цикла компрессий на манекенах в разной последовательности. Отмечено, что СЛР на полных манекенах выполняли значимо хуже, чем на манекенах с нормальной массой тела. В то время разницы в качестве компрессий на манекенах, имитировавших пациентов с ожирением и морбидным ожирением, не отмечено.

Применение аппаратов для механической компрессии грудной клетки в настоящее время является рутинным как на догоспитальном этапе оказания медицинской помощи, так и в стенах стационара. Однако в современных приборах для механической компрессии имеются четкие ограничения по габаритам пострадавших. В частности, согласно инструкции к приборам «LUCAS» и «LUCAS-2», противопоказанием к их использованию является «слишком большой пациент», имеющий высоту грудной клетки более 30,3 см, а ширину 45 см, что значимо ограничивает их использование у людей с морбидным ожирением [7].

2. Обеспечение проходимости дыхательных путей и вентиляции

Проблема трудных дыхательных путей и сложности с обеспечением искусственной вентиляции у людей с ожирением хорошо известны [1, 31]. К особенностям анатомии пациентов, осложняющим проведение вентиляции и постановку воздуховодных устройств, относят: избыток парафарингеальной ткани и увеличение толщины шеи за счет отложения жировой ткани, сочетающиеся с повышенным сопротивлением в дыхательных путях и коллапсом верхних дыхательных путей [22]. Для людей с избыточной массой тела также характерно уменьшение податливости грудной клетки, ателектазирование нижних долей легких, повышение внутрибрюшного давления. Следствием этого является снижение жизненной емкости легких, увеличение внутрилегочного шунтирования и нарушение вентиляционно-перфузионных отношений [42].

У тучных людей также существенно выше показатели потребления кислорода и производства CO₂ в сравнении с пациентами без ожирения [29, 37]. Эти особенности даже в условиях плановой интубации трахеи приводят к быстрой десатурации крови. При СЛР всегда возможна регургитация содержимого желудка, чему дополнительно способствуют повышенное внутрибрюшное давление и ассоциированное с ожирением увеличение частоты встречаемости грыжи пищеводного отверстия диафрагмы и гастроэзофагеальной рефлюксной болезни [2].

Наличие анатомических изменений, обусловленных ожирением, достоверно затрудняет проведение масочной вентиляции, повышает вероятность трудной ларингоскопии и интубации трахеи в стационаре [50], а также сопровождается увеличением количества попыток интубации трахеи, проводимой на догоспитальном этапе [21]. В экстренной

ситуации отсутствует возможность проведения адекватной предварительной оценки дыхательных путей с помощью общепринятых тестов, что не позволяет спрогнозировать трудности при обеспечении их проходимости [38]. Проведение СЛР значимо усложняет процедуру интубации трахеи у пациента с ожирением и невозможность придания ему оптимального положения, которым, по современным представлениям, является модифицированное положение «анти-Тренделенбург» (т. н. "ramped"-position).

Следовательно, интубация трахеи хоть и является золотым стандартом обеспечения проходимости ВДП и вентиляции, но при проведении реанимационных мероприятий у больных с ожирением не всегда легко осуществима. Именно поэтому существующие в настоящее время алгоритмы акцентируют особое внимание на приоритетности обеспечения вентиляции с помощью современных надгортанных оральных или назальных воздуховодов [11], а также использования стандартных приемов, улучшающих качество масочной вентиляции, в частности ПДКВ-клапана на мешке Амбу [17], замены ручной вентиляции аппаратной (если есть такая возможность) [40].

В ситуации «невозможно вентилировать и невозможно интубировать» возникает вопрос о хирургическом доступе к трахее. Однако хорошо известны результаты британского исследования «NAP4», показавшего, что коникотомия, выполняемая реаниматологами «обычным» пациентам, сопровождалась высокой частотой неудач и осложнений. Наличие же избыточной массы тела еще более осложняет поиск анатомических ориентиров для проведения коникотомии [16, 27], что порождает сомнения в целесообразности ее применения у больных с ожирением.

3. Особенности проведения электрической дефибрилляции

Залогом успешной дефибрилляции является оптимальный электрический разряд, «дошедший» до сердца. В противном случае при недостаточной энергии разряда невозможна деполяризация критической массы миокарда, а при избыточной возникает риск повреждения миокардиоцитов с развитием постреанимационной дисфункции миокарда [4].

Оптимальные уровни энергии разряда у пациентов с ожирением неизвестны, поэтому ее рекомендуемое значение пока остается неизменным (150–360 Дж) [15]. Вместе с тем известно, что люди с ожирением имеют более высокий трансторакальный импеданс, чем люди с нормальной массой тела, что может негативно влиять на успех дефибрилляции [46]. Считается, что, в отличие от монофазных дефибрилляторов, современные двухфазные дефибрилляторы способны компенсировать сопротивление тканей и в зависимости от этой характеристики регулировать мощность разряда.

В настоящее время отдельных протоколов дефибрилляции для пациентов с ожирением не существу-

ет, но работы в этом направлении проводятся. В частности, целью исследования M. Zelinka et al. [51] являлось изучение влияния высокого трансторакального импеданса пациента на энергию разряда при использовании бифазных дефибрилляторов. Для этой цели проведен сравнительный анализ применения одного монофазного и четырех бифазных дефибрилляторов, обеспечивающих оптимальную энергию дефибрилляции, рекомендованную действующими протоколами СЛР. Эксперимент проводили на моделях с разным импедансом – 50, 90, 130 Ом (средний трансторакальный импеданс человека с нормальным ИМТ = 70-80 Ом). В итоге при тестировании большинства дефибрилляторов высокий импеданс приводил к снижению силы тока ниже уровня, необходимого для дефибрилляции.

Взаимосвязь между очень высоким ИМТ и более низкой выживаемостью при возникновении дефибриллируемых ритмов (фибрилляции желудочков и желудочковой тахикардии) отмечена в обзоре R. Jain et al. [23]. Поскольку проведение электрической дефибрилляции является ключевым фактором успешности реанимационных мероприятий у взрослых пациентов с фибрилляцией желудочков, авторы публикации подняли вопрос об адекватности и достаточности стандартной методики дефибрилляции разрядами фиксированной мощности в 200, 300 и 360 Дж у пациентов с очень высоким ИМТ. Однако исследование, проведенное в медицинском центре Техасского университета, не выявило существенной разницы в частоте успешной дефибрилляции с восстановлением сердечной деятельности после инициального разряда, производимого у пациентов как с нормальной, так и с избыточной массой тела [39].

Определенные проблемы могут возникнуть и при использовании автоматических наружных дефибрилляторов, вызванные трудностями в размещении электродов дефибриллятора у пациентов с патологическим ожирением, с последующими логистическими задержками действий.

Таким образом, на сегодня пока не накоплено данных, свидетельствующих о необходимости изменения методики дефибрилляции у пациентов с ожирением.

4. Сосудистый доступ

Ожирение является независимым фактором риска, связанным с трудностями осуществления периферического венозного доступа [44]. У пациентов с ожирением вены тыла кисти и глубокие вены локтевой ямки часто невидимы и плохо пальпируемы. У многих пациентов с избыточной массой тела доступными считаются вены внутренней стороны запястья. Достаточно часто пункции и катетеризации подвергается латеральная подкожная вена руки в проекции анатомической табакерки, которая в этой зоне имеет прямой ход и четкие анатомические ориентиры. Доступ к наружной яремной вене может быть затруднен в связи с короткой толстой шеей. УЗИ-навигация в значительной степени позволяет решить проблему идентификации венозных

структур [47], но в условиях проведения реанимационных мероприятий она не всегда возможна.

В неотложных ситуациях в связи с недоступностью периферического доступа возникает вопрос о возможности и целесообразности доступа к центральным венам. Учитывая сложности с верификацией анатомических ориентиров, слепые попытки являются потенциально опасными [47]. Из-за увеличенного объема ткани между поверхностью и центральной сосудистой системой игла из стандартных наборов может быть относительно короткой или угол вкола иглы может быть слишком острым, что делает невозможным последующее прохождение проводника, расширителя и катетера или приводит к обструкции катетера после постановки при возвращении мягких тканей в исходное положение. В некоторых исследованиях для обеспечения венозного доступа у больных данной категории предлагается использование спинальных игл большого диаметра, в частности упоминается об опыте применения игл размером 18G [24, 25].

Поскольку обеспечение и периферического, и центрального доступа у людей с избыточной массой тела часто требует значимых временных затрат, что категорически неприемлемо при проведении СЛР, перспективной альтернативой может стать внутрикостное введение лекарственных средств. Данный доступ уже зарекомендовал себя в неотложных ситуациях. Но так ли легко его осуществить у пациентов с ожирением? И насколько наложение данного доступа осуществимо имеющимся в настоящее время оборудованием ввиду увеличения толщины подкожно-жировой клетчатки у больных с морбидным ожирением? Для ответа на данные вопросы были осмотрены 75 пациентов со средним ИМТ = 45.8 кг/м^2 , у которых оценивали возможность пальпаторно определить костные ориентиры в местах, рекомендованных для введения внутрикостной иглы, и производили измерение толщины подкожно-жировой клетчатки в местах, рекомендованных для внутрикостного доступа с помощью УЗ-сканера [26]. Существенные проблемы с пальпацией костных структур в местах введения иглы (проксимальный участок плечевой кости, проксимальные и дистальные участки большеберцовой кости) выявились только у больных с $MMT > 65 \, \text{кг/м}^2$. При этом толщина подкожно-жировой клетчатки в точках пункции у них составляла более 20 мм. При ИМТ ≤ 60 кг/м² толщина мягких тканей на дистальном участке большеберцовой кости не превышала 20 мм. Авторы исследования отдельно подчеркнули, что у пациентов с ИМТ < 43 кг/м² для пункции в проксимальной части большеберцовой кости можно уверенно использовать иглу длиной 25 мм. А вот для доступа к проксимальному участку плечевой кости рекомендована исключительно игла 45 мм. По результатам проведенного исследования предложен следующий алгоритм для обеспечения внутрикостного доступа у тучных больных (рис.).

Puc. Алгоритм обеспечения внутрикостного доступа у пациентов в критическом состоянии с ожирением (адаптировано по T. Kehrl et al. [27])

Fig. The procedure for providing intraosseous access in critically ill obese patients (adapted from T. Kehrl et al.) [27].

5. Дозировки препаратов

Известно, что фармакокинетика лекарственных веществ у пациентов с ожирением отличается от таковой у пациентов с нормальной массой тела. Объем распределения (Vd) лекарственного средства обычно коррелирует с липофильностью лекарственного средства. Препараты, обладающие высоким сродством к жировой ткани (кордарон, например), имеют повышенный Vd, а вещества с меньшим сродством к жировой ткани – более низкий Vd (эпинефрин) [12, 18]. Особенно важно оценивать изменения в объеме распределения тогда, когда необходимо быстрое наступление эффекта, так как именно Vd во многом определяет пиковую концентрацию препарата после введения однократной дозы. В исследованиях линейное масштабирование объема распределения в зависимости от массы тела привело к завышению объема распределения у тучных пациентов для многих лекарств [28], однако точно предсказать, насколько может измениться этот показатель, весьма сложно.

Существует мнение, что, несмотря на увеличение сердечного выброса и общего объема крови, у пациентов с ожирением отмечается снижение регионарной тканевой перфузии, что может сопровождаться снижением диффузии липофильных препаратов [19, 36]. Нами не найдено ни одной работы, посвященной исследованию фармакокинетики препаратов в условиях СЛР у пациентов с ожирением. Для проведения реанимационных мероприятий у тучных пациентов официально рекомендованы стандартные дозы препаратов, но насколько они эффективны, учитывая отличия в объеме распределе-

ния, почечном клиренсе и печеночном метаболизме, пока неясно [41].

6. Особенности транспортировки

В повседневной клинической практике одной из реальных проблем является транспортировка пациентов с ожирением. Логистические сложности в транспортном обеспечении больных данной категории таковы, что даже в случае успешно проведенной СЛР дальнейший прогноз у них осложняется невозможностью раннего начала полного комплекса мероприятий интенсивной терапии, доступных в стационаре, ввиду задержки их перемещения в стационар [43]. При опросе 525 парамедиков, работающих в США, 43,8% из числа опрошенных заявили, что для обеспечения транспортировки пациента с морбидным ожирением необходимо от шести до восьми человек, а 31,8% посчитали, что для этой цели требуется даже большее количество участников [14].

7. Исход реанимационных мероприятий у пациентов с ожирением

Учитывая наличие сопутствующей патологии, ассоциированной с ожирением, сложности при проведении СЛР, пациенты с ожирением, перенесшие клиническую смерть, должны были бы иметь меньше шансов на выживание и худший прогноз на реабилитацию. Однако в результате многочисленных исследований получены достаточно неожиданные данные, которые принято называть «парадоксом ожирения»: люди с избыточной массой тела в сравнении с пациентами, не имеющими ожирения, имеют более благоприятный как краткосрочный, так и долгосрочный прогноз в постреанимационном периоде [20, 46, 49]. Существуют, однако, и работы, свидетельствующие о диаметрально противоположных результатах и указывающие, что наличие у пациента ожирения, особенно третьей степени, ухудшает прогноз выживаемости после СЛР и приводит к увеличению частоты развития и тяжести проявлений неврологического дефицита в постреанимационном периоде [35]. Некоторые исследователи критикуют использование в качестве единственного критерия формирования групп сравнения только ИМТ, без учета распределения жировой ткани и соотношения между жировой и мышечной массой пациента, исходных различий в функциональном статусе и возрасте больных, которых используют для анализа исходов. Для того чтобы считать ожирение протективным фактором при критических ситуациях, нужны более веские основания [49].

Таким образом, проведение СЛР у пациентов с ожирением имеет свои особенности, которые пока не находят отражения в официальных документах и рекомендациях. Вместе с тем анализ литературы показывает, что их необходимо знать, также как и продолжать исследования по оценке значимости влияния различных факторов, присущих людям с избыточной массой тела, на различные аспекты реанимационных мероприятий.

Конфликт интересов. Авторы заявляют об отсутствии у них конфликта интересов. **Conflict of Interests.** The authors state that they have no conflict of interests.

ЛИТЕРАТУРА

- Анисимов М. А., Горобец Е. С., Якушина И. А. Эффективная анестезия при выполнении онкогинекологических операций у пациенток с сопутствующим морбидным ожирением // Вестник анестезиологии и реаниматологии. – 2015. – Т. 12, № 6. – С. 46-52.
- Бондаренко Е. Ю., Звенигородская Л. А., Хомерики С. Г. Гастроэзофагеальная рефлюксная болезнь у больных с ожирением // Гастроэнтерология. - 2012. - № 11. - С. 38-45.
- Галяви Р. А. Синдром обструктивного апноэ сна. Определение, диагностика, лечение // Вестник современной клинической медицины. - 2010. -№ 3 (4). - С. 38-42.
- Ефимов И. Р., Ченг Ю., Самбелашвили А. Т. и др. Прогресс в изучении механизмов электрической стимуляции сердца (часть 3) // Вестник аритмологии. – 2002. – № 29. – С. 75-80.
- Лескова И. В., Ершова Е. В., Никитина В. Я. и др. Ожирение в России: современный взгляд под углом социальных проблем // Ожирение и метаболизм. - 2019. - Т. 16, № 1. - С. 20-26.
- Рекомендации по проведению реанимационных мероприятий Европейского совета по реанимации (пересмотр 2015 г.) / Под ред. В. В. Мороза. -3-е изд., перераб. и доп. - М.: НИИОР, НСР. - 2016. - 192 с.
- 7. Система непрямого массажа сердца LUCASTM2 Инструкция по применению. 2011. 33 с.
- Alkhoudi N., Mansfield J. The mechanical properties of human adipose tissues and their relationships to the structure of composition of the extracellular matrix // Am. J. Physiol. Endocrinol. Metab. - 2013. - № 305 (12). -P. E1427-E1435.
- Alpert M. A., Omran J., Bostick B. P. Effects of obesity on cardiovascular hemodynamics, cardiac morphology, and ventricular function // Curr. Obes. Rep. - 2016. - Vol. 5, № 4. - P. 424-434.
- Aune D., Schlesinger S., Norat T. et al. Body mass index, abdominal fatness, and the risk of sudden cardiac death: a systematic review and dose-response meta-analysis of prospective studies // Eur. J. Epidemiol. - 2018. - Vol. 33, Nº 8. - P. 711-722.
- Benger J. R., Kirby K., Black S. et al. Effect of a supraglottic airway device vs tracheal intubation during out-of-hospital cardiac arrest on functional outcome // JAMA. - 2018. - № 320 (8). - P. 779-791.
- 12. Blouin R. A., Kolpek J. H., Mann H. J. Influence of obesity on drug disposition // Clin. Pharm. 1987. Vol. 6, N 9. P. 706-714.
- 13. Chen H., Deng Y. Relation of body mass index categories with risk of sudden cardiac death. A systematic review and meta-analysis // Int. Heart J. 2019. Vol. 60, N 3. P. 624-630.
- Cienki J. J. Emergency medical service providers' perspectives towards management of the morbidly obese // Prehosp. Disaster Med. - 2016. - Vol. 31, No. 5. - P. 471-474.
- Cimpoesu D., Corlade-Andrei M., Popa T. O. et al. Cardiac arrest in special circumstances-recent advances in resuscitation // Am. J. Ther. - 2019. - Vol. 26, № 2. - P. e276-e283.
- 16. Cook T. M., Woodall N., Frerk C. Fourth National Audit Project. Major complications of airway management in the UK: results of the Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. Part 1: anaesthesia // Br. J. Anaesth. 2011. № 106 (5). P. 617-631.
- Dargin J., Medzon R., Langeron O. et al. Prediction of difficult mask ventilation // Anesthesiology. - 2000. - Vol. 92, № 5. - P. 1229–1236.
- Greenblatt H. K., Greenblatt D. J. Altered drug disposition following bariatric surgery: a research challenge // Clin. Pharmacokinet. - 2015. - Vol. 54, № 6. -P. 573-579.
- Girardin E., Bruguerolle B. Pharmacokinetic changes in obesity // Therapie. -1993. - Vol. 48, № 4. - P. 397-402.
- Gupta T., Kolte D., Mohananey D. et al. Relation of obesity to survival after in-hospital cardiac arrest // Am. J. Cardiol. - 2016. - Vol. 118, № 5. - P. 662-667.
- Holmberg T. J., Bowman S. M., Warner K. J. et al. The association between obesity and difficult prehospital tracheal intubatuion // Anesth. Analg. - 2011. -Vol. 112, № 5. - P. 1132-1138.

REFERENCES

- Anisimov M.A., Gorobets E.S., Yakushina I.A. Effective anesthesia for oncogynecological surgeries in female patients with concurrent obesity. *Messenger of Anesthesiology and Resuscitation*, 2015, vol. 12, no. 6, pp. 46-52. (In Russ.)
- Bondarenko E.Yu., Zvenigorodskaya L.A., Khomeriki S.G. Gastroesophageal reflux disease in obese patients. *Gastroenterologiya*, 2012, no. 11, pp. 38-45. (In Russ.)
- Galyavi R.A. Obstructive sleep apnea syndrome. Definition, diagnosis, and treatment. Vestnik Sovremennoy Klinicheskoy Meditsiny, 2010, no. 3 (4), pp. 38-42. (In Russ.)
- Efimov I.R., Cheng Yu., Sambelashvili A.T. et al. Progress in the studying of mechanisms of electrical stimulation of the heart (part 3). Vestnik Aritmologii, 2002, no. 29, pp. 75-80. (In Russ.)
- Leskova I.V., Ershova E.V., Nikitina V.Ya. et al. Obesity in Russia: a contemporary view from the standpoint of social problems. *Ozhirenie i Metabolizm*, 2019, vol. 16, no. 1, pp. 20-26. (In Russ.)
- Rekomendatsii po provedeniyu reanimatsionnykh meropriyatiy Evropeyskogo soveta po reanimatsii. (Russ. Ed.: The European Resuscitation Council Guidelines for Resuscitation 2015). V.V. Moroz, eds., 3rd ed., Moscow, NIIOR, NSR Publ., 2016, 192 p.
- Sistema nepryamogo massazha serdtsa LUCASTM2 Instruktsiya po primeneniyu.
 [LUCASTM2 chest compression system Instructions for use]. 2011, 33 p.
- Alkhoudi N., Mansfield J. The mechanical properties of human adipose tissues and their relationships to the structure of composition of the extracellular matrix. Am. J. Physiol. Endocrinol. Metab., 2013, no. 305 (12), pp. E1427-E1435.
- Alpert M.A., Omran J., Bostick B.P. Effects of obesity on cardiovascular hemodynamics, cardiac morphology, and ventricular function. *Curr. Obes. Rep.*, 2016, vol. 5, no. 4, pp. 424-434.
- Aune D., Schlesinger S., Norat T. et al. Body mass index, abdominal fatness, and the risk of sudden cardiac death: a systematic review and dose-response meta-analysis of prospective studies. *Eur. J. Epidemiol.*, 2018, vol. 33, no. 8, pp. 711-722.
- Benger J.R., Kirby K., Black S. et al. Effect of a supraglottic airway device vs tracheal intubation during out-of-hospital cardiac arrest on functional outcome. *JAMA*, 2018, no. 320 (8), pp. 779-791.
- Blouin R.A., Kolpek J.H., Mann H.J. Influence of obesity on drug disposition. Clin. Pharm., 1987, vol. 6, no. 9, pp. 706-714.
- Chen H., Deng Y. Relation of body mass index categories with risk of sudden cardiac death. A systematic review and Meta-Analysis. *Int. Heart J.*, 2019, vol. 60, no. 3, pp. 624-630.
- Cienki J.J. Emergency medical service providers' perspectives towards management of the morbidly obese. *Prehosp. Disaster Med.*, 2016, vol. 31, no. 5, pp. 471-474.
- Cimpoesu D., Corlade-Andrei M., Popa T.O. et al. Cardiac arrest in special circumstances-recent advances in resuscitation. Am. J. Ther., 2019, vol. 26, no. 2, pp. e276-e283.
- Cook T.M., Woodall N., Frerk C. Fourth National Audit Project. Major complications of airway management in the UK: results of the Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. Part 1: anaesthesia. Br. J. Anaesth., 2011, no. 106 (5), pp. 617-631.
- Dargin J., Medzon R., Langeron O. et al. Prediction of difficult mask ventilation. Anesthesiology, 2000, vol. 92, no. 5, pp. 1229-1236.
- Greenblatt H.K., Greenblatt D.J. Altered drug disposition following bariatric surgery: a research challenge. Clin. Pharmacokinet., 2015, vol. 54, no. 6, pp. 573-579.
- 19. Girardin E., Bruguerolle B. Pharmacokinetic changes in obesity. *Therapie*, 1993, vol. 48, no. 4, pp. 397–402.
- Gupta T., Kolte D., Mohananey D. et al. Relation of obesity to survival after in-hospital cardiac arrest. Am. J. Cardiol., 2016, vol. 118, no. 5, pp. 662-667.
- Holmberg T.J., Bowman S.M., Warner K.J. et al. The association between obesity and difficult prehospital tracheal intubatuion. *Anesth. Analg.*, 2011, vol. 112, no. 5, pp. 1132-1138.

- Isono S. Obstructive sleep apnea of obese adults: pathophysiology and perioperative airway management //Anesthesiology. - 2009. - Vol. 110, № 4. - P. 908-921.
- Jain R., Nallamothu B. K., Chan P. S. Body mass index and survival after in-hospital cardiac arrest // Circ. Cardiovasc. Qual. Outcomes. - 2010. - Vol. 3, No. 5 - P. 490-497
- Jefferson P., Ball D. R. Central venous access in morbidly obese patients // Anesth. Analg. - 2002. - Vol. 95, № 3. - P. 782.
- Johnson G., Tobias J. D. Central venous access in morbidly obese patients // Anesth. Analg. - 2001. - № 93. - P. 1363.
- Kehrl T., Becker B. A., Simmons D. E. et al. Intraosseous access in the obese patient: assessing the need for extended needle length // Am. J. Emerg. Med. -2016. - Vol. 34, № 9. - P. 1831-1834.
- King D. R. Emergent cricothyroidotomy in the morbidly obese: a safe, no-visualization technique // J. Trauma. - 2011. - Vol. 71, № 6. - P. 1873-1874.
- Knibbe C. A., Brill M. J., van Rongen A. et al. Drug disposition in obesity: toward evidence-based dosing // Annu. Rev. Pharmacol. Toxicol. - 2015. -№ 55. - P. 149-167.
- Kress J. P., Pohlman A. S., Alverdy J. et al. The impact of morbid obesity on oxygen cost of breathing (VO(2RESP)) at rest // Am. J. Respir. Crit. Care Med. - 1999. - Vol. 160, № 3. - P. 883-886.
- Kumar T., Jha K., Sharan A. et al. A Study of the effect of obesity on QT-interval among adults // J. Family Med. Prim. Care. - 2019. - Vol. 8, № 5. - P. 1626-1629.
- 31. Langeron O., Birenbaum A., Le Sache F. et al. Airway management in obese patients // Minerva Anesthesiol. 2014. Vol. 80, № 3. P. 382-392.
- 32. Lee J., Oh J., Lim T. H. et al. Comparison of optimal point on the sternum for chest compression between obese and normal weight individuals with respect to body mass index, using computer tomography: A retrospective study // Resuscitation. 2015. № 128. P. 1-5.
- 33. Lee S. H., Kim D. H., Kang T. S. et al. The uniform chest compression depth of 50 mm or greater recommended by current guidelines is not appropriate for all adults // Am. J. Emerg. Med. − 2015. − № 33. − P. 1037–1041.
- 34. Lipman S., Cohen S., Einav S. et al. The society for obstetric anesthesia and perinatology consensus statement on the management of cardiac arrest in pregnancy // Anest. Analg. 2014. Vol. 118, № 5. P. 1003–1016.
- Makoto A., Hagiwara S., Oshimaet K. al. Obesity was associated with worse neurological outcome among Japanese patients with out-of-hospital cardiac arrest // Intens. Care Med. - 2018. - № 44. - P. 665–666.
- Michael J. H., Abernethy D. R., Greenblatt D. J. Effect of obesity on the pharmacokinetics of drugs in humans // Clin. Pharmacokinet. - 2010. - Vol. 49, № 2. - P. 71-87.
- 37. Murphy C., Wong D. T. Airway management and oxygenation in obese patients // Can. J. Anaesth. 2013. Vol. 60, № 9. P. 929–945.
- Norskov A. K. Preoperative airway assessment experience gained from a multicenter cluster randomised trial and the Danish Anaesthesia Database // Dan. Med. I. - 2016. - Vol. 63. № 5.
- Ogunnaike B. O., Whitten C. W., Minhajuddin A. et al. Body mass index and outcomes of in-hospital ventricular tachycardia and ventricular fibrillation arrest // Resuscitation. - 2016. - № 105. - P. 156-160.
- Parker K., Manning S., Winters M. E. The crashing obese patient // Western J. Emerg. Med.: Integrating Emergency Care with Population Health. – 2019. – Vol. 20, № 2. – P. 323–330.
- 41. Perioperative management of the obese surgical patient 2015 / Member of the Working Party: C. E. Nightingale, M. P. Margarson, E. Shearer et al. // Anaesthesia. 2015. Vol. 70, № 7. P. 859–876.
- Peters U., Dixon A. E. The effect of obesity on lung function // Expert. Rev. Respir. Med. - 2018. - Vol. 12, № 9. - P. 755-767.
- Réminiac F., Jouan Y., Cazals X. et al. Risks associated with obese patient handling in emergency prehospital care // Prehospital Emerg. Care. - 2014. -Vol. 18, № 4. - P. 555-557.
- Sebbane M., Claret P. G., Lefebvre S. et al. Predicting peripheral venous access difficulty in the emergency department using body mass index and a clinical evaluation of venous accessibility // J. Emerg. Med. - 2013. - Vol. 44, № 2. - P. 299-305.
- 45. Secombe P., Sutherland R., Johnson R. Body mass index and thoracic subcutaneous adipose tissue depth: possible implications for adequacy of chest compressions // BMC Res Notes. 2017. № 10. P. 575.
- 46. Shahreyar M., Dang G., Waqas B. M. et al. Outcomes of in-hospital cardiopulmonary resuscitation in morbidly obese patients // JACC Clin Electrophysiol. 2017. Vol. 3, № 2. P. 174-183.

- Isono S. Obstructive sleep apnea of obese adults: pathophysiology and perioperative airway management. *Anesthesiology*, 2009, vol. 110, no. 4, pp. 908-921.
- Jain R., Nallamothu B.K., Chan P.S. Body mass index and survival after in-hospital cardiac arrest. *Circ. Cardiovasc. Qual. Outcomes*, 2010, vol. 3, no. 5, pp. 490-497.
- Jefferson P, Ball D.R. Central venous access in morbidly obese patients. Anesth. Analg., 2002, vol. 95, no. 3, pp. 782.
- Johnson G., Tobias J.D. Central venous access in morbidly obese patients. *Anesth. Analg.*, 2001, no. 93, pp. 1363.
- Kehrl T., Becker B.A., Simmons D.E. et al. Intraosseous access in the obese patient: assessing the need for extended needle length. *Am. J. Emerg. Med.*, 2016, vol. 34, no. 9, pp. 1831-1834.
- 27. King D.R. Emergent cricothyroidotomy in the morbidly obese: a safe, no-visualization technique. *J. Trauma*, 2011, vol. 71, no. 6, pp. 1873–1874.
- Knibbe C.A., Brill M.J., van Rongen A. et al. Drug disposition in obesity: toward evidence-based dosing. *Annu. Rev. Pharmacol. Toxicol.*, 2015, no. 55, pp. 149-167.
- Kress J.P., Pohlman A.S., Alverdy J. et al. The impact of morbid obesity on oxygen cost of breathing (VO(2RESP)) at rest. Am. J. Respir. Crit. Care Med., 1999, vol. 160, no. 3, pp. 883-886.
- 30. Kumar T., Jha K., Sharan A. et al. A Study of the effect of obesity on QT-interval among adults. *J. Family Med. Prim. Care*, 2019, vol. 8, no. 5, pp. 1626-1629.
- Langeron O., Birenbaum A., Le Sache F. et al. Airway management in obese patients. *Minerva Anestesiol.*, 2014, vol. 80, no. 3, pp. 382–392.
- Lee J., Oh J., Lim T.H. et al. Comparison of optimal point on the sternum for chest compression between obese and normal weight individuals with respect to body mass index, using computer tomography: A retrospective study. *Resuscitation*, 2015, no. 128, pp. 1-5.
- Lee S.H., Kim D.H., Kang T.S. et al. The uniform chest compression depth of 50
 mm or greater recommended by current guidelines is not appropriate for all
 adults. Am. J. Emerg. Med., 2015, no. 33, pp. 1037–1041.
- Lipman S., Cohen S., Einav S. et al. The society for obstetric anesthesia and perinatology consensus statement on the management of cardiac arrest in pregnancy. *Anest. Analg.*, 2014, vol. 118, no. 5, pp. 1003–1016.
- Makoto A., Hagiwara S., Oshimaet K. al. Obesity was associated with worse neurological outcome among Japanese patients with out-of-hospital cardiac arrest. *Intens. Care Med.*, 2018, no. 44, pp. 665-666.
- Michael J.H., Abernethy D.R., Greenblatt D.J. Effect of obesity on the pharmacokinetics of drugs in humans. *Clin. Pharmacokinet.*, 2010, vol. 49, no. 2, pp. 71–87.
- Murphy C., Wong D.T. Airway management and oxygenation in obese patients. Can. J. Anaesth., 2013, vol. 60, no. 9, pp. 929–945.
- Norskov A.K. Preoperative airway assessment experience gained from a multicenter cluster randomised trial and the Danish Anaesthesia Database. Dan. Med. J., 2016, vol. 63, no. 5.
- 39. Ogunnaike B.O., Whitten C.W., Minhajuddin A. et al. Body mass index and outcomes of in-hospital ventricular tachycardia and ventricular fibrillation arrest. *Resuscitation*, 2016, no. 105, pp. 156–160.
- Parker K., Manning S., Winters M.E. The crashing obese patient. Western J. Emerg. Med.: Integrating Emergency Care with Population Health, 2019, vol. 20, no. 2, pp. 323–330.
- 41. Perioperative management of the obese surgical patient 2015. Member of the Working Party: C.E. Nightingale, M.P. Margarson, E. Shearer et al. *Anaesthesia*, 2015, vol. 70, no. 7, pp. 859-876.
- 42. Peters U., Dixon A.E. The effect of obesity on lung function. *Expert. Rev. Respir. Med.*, 2018, vol. 12, no. 9, pp. 755–767.
- Réminiac F., Jouan Y., Cazals X. et al. Risks associated with obese patient handling in emergency prehospital care. *Prehospital Emerg. Care*, 2014, vol. 18, no. 4, pp. 555–557.
- Sebbane M., Claret P.G., Lefebvre S. et al. Predicting peripheral venous access difficulty in the emergency department using body mass index and a clinical evaluation of venous accessibility. *J. Emerg. Med.*, 2013, vol. 44, no. 2, pp. 299–305.
- Secombe P., Sutherland R., Johnson R. Body mass index and thoracic subcutaneous adipose tissue depth: possible implications for adequacy of chest compressions. *BMC Res. Notes*, 2017, no. 10, pp. 575.
- Shahreyar M., Dang G., Waqas B.M. et al. Outcomes of in-hospital cardiopulmonary resuscitation in morbidly obese patients. *JACC Clin. Electrophysiol.*, 2017, vol. 3, no. 2, pp. 174-183.

- Smita P., Gaurav A., Shobha R. Peripheral venous access in the obese patient $\ensuremath{//}$ Indian. J. Anaesth. - 2015. - Vol. 59, № 10. - P. 692-693.
- 48. Tellson A., Qin H., Erwin K. et al. Efficacy of acute care health care providers in cardiopulmonary resuscitation compressions in normal and obese adult simulation manikins // Proc. (Bayl. Univ. Med. Cent). - 2017. - Vol. 30, № 4. - P. 415-418.
- 49. Testori C., Sterz F., Losert H. et al. Cardiac arrest survivors with moderate elevated body mass index may have a better neurological outcome: a cohort study // Resuscitation. - 2011. - Vol. 82, № 7. - P. 869-873.
- 50. Yakushiji H., Goto T., Shirasaka W. et al. Associations of obesity with tracheal intubation success on first attempt and adverse events in the emergency department: An analysis of the multicenter prospective observational study in Japan // PLoS One. - 2018. - 19-13, № 4. - P. e0195938.
- 51. Zelinka M., Buić D., Zelinka I. Comparison of five different defibrillators using recommended energy protocols // Resuscitation. - 2007. - Vol. 74, № 3. -P 500-507

- 47. Smita P., Gaurav A., Shobha R. Peripheral venous access in the obese patient. Indian. J. Anaesth., 2015, vol. 59, no. 10, pp. 692-693.
- 48. Tellson A., Qin H., Erwin K. et al. Efficacy of acute care health care providers in cardiopulmonary resuscitation compressions in normal and obese adult simulation manikins. Proc. (Bayl. Univ. Med. Cent), 2017, vol. 30, no. 4, pp. 415-418.
- 49. Testori C., Sterz F., Losert H. et al. Cardiac arrest survivors with moderate elevated body mass index may have a better neurological outcome: a cohort study. Resuscitation, 2011, vol. 82, no. 7, pp. 869-873.
- 50. Yakushiji H., Goto T., Shirasaka W. et al. Associations of obesity with tracheal intubation success on first attempt and adverse events in the emergency department: An analysis of the multicenter prospective observational study in Japan. PLoS One, 2018, 19-13, no. 4, pp. e0195938.
- 51. Zelinka M., Buić D., Zelinka I. Comparison of five different defibrillators using recommended energy protocols. Resuscitation, 2007, vol. 74, no. 3, pp. 500-507.

ИНФОРМАЦИЯ ОБ АВТОРАХ:

ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова» МЗ РФ, 194354, Санкт-Петербург, ул. Льва Толстого, д. 6-8. Тел.: 8 (812) 338-71-66.

Боробов Юрий Михайлович

кандидат медицинских наук, ассистент кафедры анестезиологии и реаниматологии.

E-mail: <u>borobovu@mail.ru</u> (для корреспонденции)

Самсонова Анастасия Александровна

клинический ординатор кафедры анестезиологии и реаниматологии.

E-mail: ali4fan1@gmail.com

Зарипова Зульфия

кандидат медицинских наук, доцент кафедры анестезиологии и реаниматологии. E-mail: realzulya@mail.ru

Астахова Дарья Юрьевна

клинический ординатор кафедры анестезиологии и реаниматологии.

E-mail: darya.astakhova.94@mail.ru

Лапушкин Михаил Николаевич

ФГБУН «Физико-технический институт им. А. Ф. Иоффе Российской академии наук»,

кандидат физико-математических наук,

старший научный сотрудник.

194021, Санкт-Петербург, ул. Политехническая, д. 26.

Тел.: 8 (812) 292-71-14. E-mail: lapushkin@ms.ioffe.ru

Соловьева Мария Олеговна

ГБУЗ «Городская больница Святого Великомученика Георгия».

кандидат медицинских наук,

руководитель центра комплексного лечения ожирения. 194354, Санкт-Петербург, Проспект Северный, д. 1.

Тел.: 8 (812) 511-96-00.

INFORMATION ABOUT THE AUTHORS:

Pavlov First Saint Petersburg State Medical University, 6-8, Lva Tolstogo St., St. Petersburg, 194354 Phone: +7 (812) 338-71-66.

Yury M. Borobov

Candidate of Medical Sciences, Assistant of Anesthesiology and Intensive Care Department.

Email: <u>borobovu@mail.ru</u> (for correspondence)

Anastasia A. Samsonova

Resident of Anesthesiology and Intensive Care Department. Email: ali4fan1@gmail.com

Zulfia Zaripova

Candidate of Medical Sciences, Associate Professor of Anesthesiology and Intensive Care Department. Email: realzulya@mail.ru

Darya Yu. Astakhova

Resident of Anesthesiology and Intensive Care Department. Email: darya.astakhova.94@mail.ru

Mikhail N. Lapushkin

The Ioffe Institute of the Russian Academy of Science, Candidate of Physico-Mathematical Sciences, Senior Researcher. 26, Polytechnicheskaya St., St. Petersburg, 194021. Phone: +7 (812) 292-71-14.

Email: lapushkin@ms.ioffe.ru

Maria O. Solovieva

Saint George the Martyr Municipal Hospital, Candidate of Medical Sciences, Head of Center for Complex Treatment of Obesity. 1, Severny Ave., St. Petersburg, 194354. Phone: 8 (812) 511-96-00.