© СС Коллектив авторов, 2025

https://doi.org/10.24884/2078-5658-2025-22-5-121-131



# Оценка функционального почечного резерва для прогнозирования развития кардиохирургически ассоциированного острого повреждения почек (обзор литературы)

Т. Х. КАСИМ'\*, А. Г. ЯВОРОВСКИЙ', И. А. МАНДЕЛЬ $^{1,2}$ , М. Е. ПОЛИТОВ', П. В. НОГТЕВ', Е. Ю. ХАЛИКОВА', Е. Л. БУЛАНОВА', М. А. ВЫЖИГИНА, А. А. ПОСНОВ', Б. М. ТЛИСОВ', В. Ф. ПЕТРОВСКИЙ'

<sup>1</sup> Первый Московский государственный медицинский университет имени И. М. Сеченова (Сеченовский Университет), Москва, Российская Федерация

Поступила в редакцию 02.06.2025 г.; дата рецензирования 08.08.2025 г.

Введение. Острое повреждение почек (ОПП) — частое осложнение кардиохирургических вмешательств. Несмотря на разнообразие предложенных нефропротективных стратегий, клинические данные об их эффективности остаются противоречивыми, а современные методы диагностики не позволяют своевременно выявлять скрытые нарушения функции почек. В этих условиях особое внимание привлекает оценка функционального почечного резерва (ФПР) как потенциального инструмента раннего прогнозирования и профилактики ОПП.

**Цель** — обобщить современные данные о функциональном почечном резерве, методах его оценки и клинической значимости в прогнозировании и профилактике кардиохирургически ассоциированного ОПП.

Материалы и методы. Проведен обзор научных публикаций, отобранных из баз данных PubMed, Scopus, Web of Science и eLibrary за период с 1983 по март 2025 гг. Включались оригинальные исследования и обзоры, посвященные физиологии ФПР, методам его оценки, клиническому применению и нефропротективному потенциалу. В анализ включали только исследования, касающиеся взрослой популяции пациентов.

**Результаты.** ФПР отражает способность почек адаптироваться к физиологической нагрузке за счет увеличения скорости клубочковой фильтрации. Представлены механизмы активации ФПР, методы его оценки (включая белковую нагрузку и аминокислотную инфузию), а также клинические исследования, подтверждающие прогностическое значение ФПР и возможность его использования в целях нефропрофилактики.

**Заключение.** ФПР представляет собой перспективный показатель, который может быть использован для предоперационной стратификации риска и разработки индивидуализированных стратегий профилактики ОПП у кардиохирургических пациентов.

*Ключевые слова*: функциональный почечный резерв, острое повреждение почек, аминокислотная инфузия, кардиохирургия, нефропротекция, искусственное кровообращение

**Для цитирования:** Касим Т. Х., Яворовский А. Г., Мандель И. А., Политов М. Е., Ногтев П. В., Халикова Е. Ю., Буланова Е. Л., Выжигина М. А., Поснов А. А., Тлисов Б. М., Петровский В. Ф. Оценка функционального почечного резерва для прогнозирования развития кардиохирургически ассоциированного острого повреждения почек (обзор литературы) // Вестник анестезиологии и реаниматологии. -2025. - Т. 22, № 5. - С. 121-131. https://doi.org/10.24884/2078-5658-2025-22-5-121-131.

# Assessment of the renal functional reserve for predicting the development of cardiosurgically associated acute kidney injury (literature review)

TIMUR KH. KASIM\*, ANDREI G. YAVOROVSKY, IRINA A. MANDEL, MIKHAIL E. POLITOV, PAVEL V. NOGTEV, ELENA Y. KHALIKOVA, EKATERINA L. BULANOVA, MARGARITA A. VYZHIGINA, ANTON A. POSNOV, BORIS M. TLISOV, VLADIMIR F. PETROVSKII

- <sup>1</sup> I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- <sup>2</sup> Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia,

Received 02.06.2025; review date 08.08.2025

Introduction. Acute kidney injury (AKI) is a common complication of cardiac surgery. Despite a variety of proposed nephroprotective strategies, clinical data on their effectiveness remain inconsistent, and current diagnostic methods often fail to detect subclinical renal dysfunction in a timely manner. Under these circumstances, renal functional reserve (RFR) has gained attention as a potential tool for early prediction and prevention of AKI.

The objective was to summarize current data on renal functional reserve, methods of its assessment and its clinical significance in the prediction and prevention of cardiac surgery associated AKI.

Materials and Methods. A literature review was conducted using scientific publications retrieved from PubMed, Scopus, Web of Science, and eLIBRARY databases, covering the period from 1983 to March 2025. Included were original research articles and reviews focused on the physiology of renal functional reserve (RFR), methods for its assessment, clinical applications, and nephroprotective potential. Only studies involving adult patient populations were considered.

**Results.** RFR reflects the kidneys' ability to adapt to physiological stress by increasing the glomerular filtration rate. This section presents the mechanisms underlying RFR activation, methods of its assessment (including protein load and amino acid infusion), and clinical studies demonstrating the prognostic value of RFR and its potential use in nephroprotective strategies.

**Conclusion.** RFR is a promising biomarker for preoperative risk stratification and the development of individualized nephroprotection strategies in cardiac surgical patients.

Keywords: renal functional reserve, acute kidney injury, amino acid infusion, cardiac surgery, nephroprotection, cardiopulmonary bypass

<sup>&</sup>lt;sup>2</sup> Федеральный научно-клинический центр специализированных видов медицинской помощи и медицинских технологий Федерального медико-биологического агентства России, Москва, Российская Федерация

For citation: Kasim T. Kh., Yavorovsky A. G., Mandel I. A., Politov M. E., Nogtev P. V., Khalikova E. Y., Bulanova E. L., Vyzhigina M. A., Posnov A. A., Tlisov B. M., Petrovskii V. F. Assessment of the renal functional reserve for predicting the development of cardiosurgically associated acute kidney injury (literature review). *Messenger of Anesthesiology and Resuscitation*, 2025, Vol. 22, № 5, P. 121–131. (In Russ.). https://doi.org/10.24884/2078-5658-2025-22-5-121-131.

\* Для корреспонденции: Тимур Хайдарович Касим E-mail: kasim t kh@staff.sechenov.ru

#### Введение

Острое повреждение почек (ОПП) - частое осложнение кардиохирургических операций, встречающееся в 8,9–39% случаев, особенно при использовании искусственного кровообращения (ИК), что существенно увеличивает риск летальности и развития хронической болезни почек (ХБП) [1, 37]. Разработка новых методов диагностики и нефропротекции, направленных на снижение риска ОПП, стала приоритетной задачей современной медицины [2, 4]. Выявление пациентов с высоким риском развития ОПП в послеоперационном периоде имеет важное значение для снижения осложнений, улучшения качества жизни и сокращения экономических затрат на лечение [3, 25]. Одним из перспективных методов является оценка функционального почечного резерва (ФПР), которая позволяет выявить скрытые нарушения почечной функции до операции и прогнозировать риск развития ОПП, особенно у кардиохирургических пациентов с высоким риском осложнений.

**Цель** обзора литературы — обобщить современные данные о физиологии ФПР, его методах оценки и клинической значимости в прогнозировании и профилактике ОПП у пациентов, перенесших кардиохирургические вмешательства.

# Методы поиска и отбора литературы

Поиск проводился в базах PubMed, Scopus, Web of Science и eLibrary с применением комбинаций ключевых слов: «renal functional reserve», «acute kidney injury», «cardiac surgery», «nephroprotection», «glomerular filtration rate», «amino acid infusion». Были включены статьи, опубликованные на английском и русском языках в период с 1983 по март 2025 гг. Критериями включения служили: наличие полной версии текста, публикация в рецензируемых журналах, клиническая или экспериментальная направленность, отражение данных о функциональном почечном резерве, ОПП и его профилактике в кардиохирургии. Были исключены статьи с описанием исключительно педиатрической популяции и публикации без указания методов оценки ФПР.

# Результаты и обсуждение

Базовая (нестрессовая) скорость клубочковой фильтрации СКФ. Скорость клубочковой фильтрации (СКФ) – ключевой параметр для оценки функции почек как у здоровых людей, так и у пациентов с

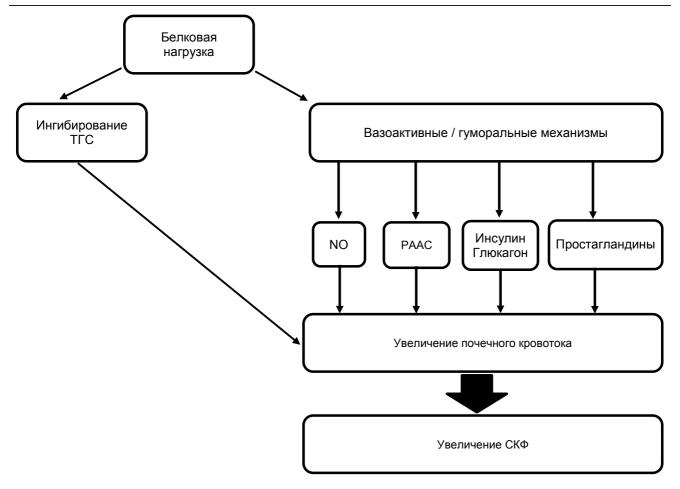
\* Correspondence: Timur Kh. Kasim E-mail: kasim t kh@staff.sechenov.ru

почечной недостаточностью. На СКФ влияют факторы, такие как возраст, пол, масса тела и питание [43]. Она отражает совокупную активность всех нефронов, но не их точное количество. Средние значения СКФ для здоровых людей составляют около 120 мл/мин/1,73 м² у мужчин и 110 мл/мин/1,73 м² у женщин, но возможны значительные вариации. СКФ остается стабильной, однако с 30 лет она физиологически снижается на 0,8 мл/мин/1,73 м² в год [27,36]. У мужчин снижение происходит медленнее, чем у женщин, но при ХБП эти различия стираются. Креатинин и СКФ могут оставаться в норме даже при значительном повреждении почек, пока не потеряно около 50% нефронов [33].

Определение функциональных почечных резервов. Концепция ФПР была предложена в 1983 г., а в современной медицине интерес к данному феномену только нарастает [29]. ФПР определяется как способность почек увеличивать СКФ в ответ на физиологическую стимуляцию, например, белковую нагрузку [8]. У здоровых людей прирост СКФ может варьировать от 6% до 40%, в среднем около 26% [43, 46]. Почки используют около 75% своей максимальной фильтрационной способности, что свидетельствует о наличии резерва для адаптации [41]. ФПР аналогичен сердечному резерву: при увеличении нагрузки почки компенсируют ее, увеличивая СКФ, что позволяет поддерживать функцию при потере нефронов или повышенных метаболических потребностях, например, при беременности, гипертензии или диабете [15, 42]. ФПР компенсирует утрату нефронов, однако, когда компенсация становится невозможной, снижается общая СКФ и растет уровень креатинина [45].

Современные исследования демонстрируют, что оценка ФПР является перспективным методом для раннего прогнозирования риска ОПП и оптимизации стратегии профилактики осложнений [24]. Основной метод оценки ФПР – это стимуляция СКФ с помощью белковой нагрузки, после которой оценивают разницу между исходной СКФ и СКФ после стимуляции, так называемой расчетной СКФ [13]. Расчетная СКФ по сывороточному креатинину с использованием формул СКD-ЕРІ широко применяется в клинической практике благодаря простоте и доступности. Однако в контексте оценки ФПР этот метод имеет ограниченную ценность. Он не способен точно отразить кратковременные изменения СКФ в ответ на стимуляцию, поскольку уровень креатинина меняется медленно и зависит от массы тела, пола и питания [50]. В исследовательских протоколах для оценки ФПР использу-

ются клиренс креатинина по моче, цистатин С [23] или экзогенные маркеры, такие как инулин или радиофармацевтические препараты (Тс99m-DTPA, Cr-EDTA), обеспечивающие более чувствительную и динамичную оценку фильтрационной функции [18, 24, 36]. В большинстве исследований для нагрузки используется красное мясо или другие продукты с высоким содержанием белка, что вызывает наибольшее повышение СКФ (до 40%) [8, 41]. Наиболее используемый протокол в текущих исследованиях включает однократное определение базовой СКФ (до стимуляции) и повторное измерение в течение 4-6 часов после начала инфузии аминокислот в дозировке 2 г/кг в сутки. Разница между стимулированной и базовой СКФ отражает величину ФПР. Данная методика вызывает повышение СКФ быстрее, чем пероральная нагрузка (30–60 мин против 60–180 мин) [8, 36]. Такой подход позволяет не только выявить пациентов с латентным снижением функционального резерва, но и оценить эффективность потенциальных нефропротективных вмешательств [36]. Кроме того, считается, что инфузия аминокислот потенциально обладает нефропротективным эффектом, что делает данное вмешательство полезными не только для оценки  $\Phi\Pi P$ , но и для профилактики ОПП [29].


Механизмы, опосредующие активацию функциональных почечных резервов. За последние несколько лет ученые значительно углубили понимание механизмов активации ФПР после инфузии аминокислот или альтернативной белковой нагрузки [29]. Эти данные важны для понимания физиологии почек, а также для разработки новых диагностических и терапевтических подходов.

Гемодинамические механизмы рассматриваются как один из ключевых компонентов активации ФПР. Их реализация направлена на увеличение СКФ за счет регуляции сосудистого тонуса, перераспределения внутрипочечного кровотока, усиления притока крови к корковому слою и регуляции трансгломерулярного давления [13].

Центральное значение в гемодинамическом компоненте ФПР имеет дилатация афферентной артериолы [29, 45], что приводит к увеличению объема поступающей крови в приносящий сосуд клубочка. Это вызывает повышение гидростатического давления в капиллярах клубочка и, соответственно, рост СКФ. Ключевыми медиаторами, ответственными за данную вазодилатацию, являются оксид азота (NO) [14, 29], простагландины (особенно PGE<sub>2</sub>) [9] и глюкагон [11], вырабатываемые в ответ на увеличение концентрации аминокислот в системной циркуляции. NO синтезируется эндотелиальными клетками и действует локально, снижая сосудистое сопротивление [14]. Простагландины, в частности PGE<sub>2</sub> [16, 18], обладают мощным вазодилатирующим эффектом и усиливают регионарный корковый кровоток, способствуя оптимизации фильтрационной поверхности. Глюкагон активирует продукцию этих медиаторов и оказывает дополнительное стимулирующее влияние на клубочковую фильтрацию за счет увеличения почечного кровотока и расширения артериол [24, 29].

Значимый вклад в активацию ФПР вносит подавление тубулогломерулярной обратной связи – локального механизма ауторегуляции нефрона, который регулирует сопротивление афферентной артериолы в зависимости от доставки хлорида натрия к плотному пятну (macula densa) [47, 50]. При белковой или аминокислотной нагрузке происходит активная реабсорбция аминокислот в проксимальных канальцах, сопряженная с усиленной реабсорбцией натрия. В результате к macula densa поступает меньше NaCl, что воспринимается как сигнал о недостаточной фильтрации [18]. Ответной реакцией становится снижение активации тубулогломерулярной обратной связи, что вызывает рефлекторную дилатацию афферентной артериолы и дальнейшее усиление СКФ [47]. Этот механизм особенно важен у пациентов с сохраненной структурой нефронов и чувствительной обратной связью [41].

Эфферентная артериола также может участвовать в регуляции внутриклубочкового давления. Сужение эфферентного сосуда способствует поддержанию высокого давления фильтрации. Этот механизм опосредован в первую очередь ангиотензином II, который тонко регулирует тонус эфферентной артериолы. У пациентов с активной ренин-ангиотензин-альдостероновой умеренное сужение эфферентного сосуда усиливает градиент давления, необходимый для фильтрации [5]. Однако при применении ингибиторов ангиотензин-превращающего фермента или блокаторов рецепторов ангиотензина II данный механизм ослабляется, что приводит к снижению внутриклубочкового давления и уменьшению прироста СКФ в ответ на стимуляцию [39]. Гормональная регуляция также играет важную роль в сосудистом компоненте ФПР. Помимо глюкагона, значительный вклад вносят инсулин и катехоламины. Инсулин, вводимый с аминокислотами или вырабатываемый эндогенно в ответ на белковую нагрузку, активирует фосфоинозитид-3-киназу, что способствует увеличению выработки оксида азота эндотелием и дальнейшему снижению тонуса сосудистой стенки [35]. Эти эффекты могут быть модулированы в зависимости от инсулинорезистентности, сахарного диабета или других метаболических состояний. Стоит отметить, что реактивность сосудов почек к аминокислотной нагрузке может изменяться под воздействием лекарственной терапии. Например, применение ингибиторов SGLT2 усиливает тубулогломерулярную обратную связь, увеличивая подачу NaCl к macula densa, что может снижать прирост СКФ при тестировании ФПР [49]. Это необходимо учитывать при интерпретации результатов теста у пациентов, получающих нефропротективную терапию [29, 35]. Таким образом, гемодинамические механизмы активации ФПР представляют собой скоординированную реакцию сосудистой, эндотелиальной



Гемодинамические механизмы увеличения СКФ после белковой нагрузки: PAAC – ренин-ангиотензн-альдостероновая система, NO – оксид азота, TГС – тубулогломерулярная обратная связь, СКФ – скорость клубочковой фильтрации [18] Hemodynamic mechanisms of glomerular filtration rate increase after protein load: RAAS – renin-angiotensin-aldosterone system, NO –nitric oxide, TGF – tubuloglomerular feedback, GFR – glomerular filtration rate [18]

и гормональной систем, направленную на кратковременное увеличение фильтрационной функции почек. Эти процессы лежат в основе как диагностического использования  $\Phi\Pi P$ , так и его нефропротективного потенциала, особенно в условиях хирургического стресса (рисунок).

Помимо гемодинамических реакций, активация ФПР включает широкий спектр других механизмов, обеспечивающих мобилизацию адаптационного потенциала почек на уровне нефронов, тубулоинтерстициального обмена, внутриклеточных сигнальных каскадов и митохондриальной активности. Эти механизмы усиливают фильтрационную емкость почек в условиях физиологической нагрузки и играют важную роль в интерпретации ФПР как интегрального функционального маркера.

Одним из ключевых факторов является вовлечение ранее неактивных или малоработающих нефронов [41]. В нормальных условиях лишь часть нефронов функционирует на полную фильтрационную мощность. При стимуляции белком или аминокислотами активируется дополнительное количество клубочков, что увеличивает суммарную фильтрационную площадь почек [12, 17]. Такой механизм аналогичен рекрутированию капиллярного русла в легких при физической нагрузке [32].

На уровне проксимальных канальцев происходит выраженная метаболическая активация клеток. Усиленная реабсорбция аминокислот и натрия сопровождается увеличением потребления кислорода, стимуляцией митохондриальной активности и ростом внутриклеточной энергетической потребности. Это требует активизации транспортных систем (в том числе Na<sup>+</sup>/K<sup>+</sup>-ATФазы и SGLT2) и отражает повышение функциональной загрузки нефрона [7, 40].

Важное значение имеет внутриклеточная сигнальная трансдукция, в частности, активация mTOR-зависимых каскадов [19]. Аминокислоты действуют как сигнальные молекулы, активирующие клеточные механизмы роста, синтеза белка и адаптации к нагрузке [19, 34]. Это способствует повышению функциональной устойчивости нефрона и его способности перерабатывать увеличенный объем ультрафильтрата [35]. Неотъемлемым компонентом является улучшение почечной оксигенации, особенно в мозговом и наружном корковом слоях. Повышение перитубулярного кровотока обеспечивает адекватную доставку кислорода в условиях возросшего метаболизма, снижая риск гипоксии и канальцевого повреждения. Эти изменения способствуют устойчивой фильтрационной и реабсорбционной функции без развития ишемических нарушений [24, 38].

Описан также феномен функциональной адаптации и пластичности почек. При повторных нагрузках наблюдается усиление фильтрационного ответа, что связывают с изменениями в экспрессии митохондриальных ферментов, транспортных белков и рецепторного аппарата канальцев [28]. Такой эффект подтверждает способность нефронов к динамической адаптации и «обучению» в условиях повторяющегося функционального стресса.

# Применение функционального почечного резерва в кардиохирургии

Оценка ФПР с помощью белковой нагрузки в качестве предиктора дисфункции почек. Исследование F. Husain-Syed et al. (2018) продемонстрировало, что у 110 пациентов с нормальной СКФ, перенесших кардиохирургические операции с использованием ИК, низкий функциональный почечный резерв, оценивавшийся как разница между СКФ до и после пероральной высокобелковой нагрузки порошком красного мяса, был значимым предиктором ОПП. Пациенты с ФПР менее 15 мл/мин/1,73 м² имели в 11,8 раз больший риск развития ОПП по сравнению с пациентами с нормальными показателями почечной функции (AUC 0,83; ДИ 0,70–0,96) [21].

В более позднем исследовании F. Husain-Syed et al. (2019) проанализировали стойкое снижение ФПР у пациентов, перенесших ОПП после кардиохирургических вмешательств, несмотря на клиническое восстановление и нормальный уровень сывороточного креатинина и СКФ. В данное исследование было включено 86 пациентов с нормальной исходной СКФ, у которых измерили ФПР до операции и спустя три месяца после нее, используя пероральную высокобелковую нагрузку [22]. Авторы продемонстрировали, что средняя СКФ у всех пациентов оставалась в пределах нормы  $(93,3\pm 15,1 \text{ мл/мин}/1,73 \text{ м}^2)$ . Однако у пациентов с ОПП ФПР снизился с 14,4 до  $9,1 \text{ мл/мин}/1,73 \text{ м}^2$  (p < 0,001), что указывает на ослабление адаптивной способности почек. У пациентов с повышенными уровнями биомаркеров (ТІМР-2 и IGFBP7), но без явных признаков ОПП, ФПР также снизился – с 26,7 до 19,7 мл/мин/1,73 м<sup>2</sup> (p < 0.001), что свидетельствует о возможном скрытом повреждении почек. В группе без ОПП и без повышения биомаркеров значимых изменений ФПР не наблюдалось. Через три месяца у трех пациентов развилась ХБП, причем двое из них перенесли ОПП, а один имел повышенные биомаркеры без ОПП. Таким образом, ФПР отражает не текущую, а адаптивную способность нефронов, и может снижаться задолго до появления клинических или лабораторных признаков ОПП.

Современные биомаркеры, такие как NGAL, L-FABP и TIMP-2×IGFBP7, преимущественно указывают на уже произошедшее повреждение канальцев, в то время как ФПР позволяет выявить

скрытую уязвимость до наступления события [44]. В отличие от биомаркеров, ФПР остается стабильным вне влияния воспаления, лекарств или кратковременной гипоперфузии, и отражает физиологический резерв клубочковой фильтрации, доступный в условиях стресса (например, ИК, анемия, гипотензия). Это делает ФПР важным компонентом оценки риска, особенно в сочетании с биомаркерами и современными шкалами [24, 35].

Данные исследования подтверждают важность оценки ФПР как прогностического инструмента для предсказания риска ОПП у кардиохирургических пациентов и подчеркивают целесообразность ранней диагностики. Однако для подтверждения данной гипотезы требуется проведение крупных многоцентровых, международных клинических исследований.

Внутривенная инфузия аминокислот как метод нефропротекции в кардиохирургии. Кроме использования белковой нагрузки для оценки ФПР, аминокислоты могут применяться как средство нефропротекции, особенно у пациентов с высоким риском развития ОПП. В пилотном исследовании Ү. Ри et al. (2018) приняли участие 69 взрослых пациентов с исходно интактной функцией почек, которым была проведено кардиохирургическое вмешательство с использованием ИК продолжительностью более одного часа. У пациентов, получавших инфузию сбалансированной смеси L-аминокислот, в дозировке 0,5 г/кг/час, в течение суток прирост СКФ был значительно выше, чем в группе стандартного лечения (18% по сравнению с 7% (p < 0.05)). Хотя общая частота ОПП между группами не различалась, продолжительность ОПП была короче у пациентов, получавших аминокислоты (2,5 дня по сравнению с 4,1 дня (p < 0.01)). Также пациенты группы вмешательства имели более высокий диурез – 1,6 литра в сутки, в то время как в контрольной группе – 1,2 литра в сутки (p < 0.05) [40].

В моноцентровом рандомизированом клиническом исследовании М. Каzawa et al. (2024) с участием 66 взрослых пациентов, перенесших операцию на аорте, применение внутривенной инфузии 60 грамм в сутки сбалансированной смеси аминокислот «Атврагеп», несмотря на отсутствие статистической разницы в сывороточном креатинине, приводило к снижению частоты ОПП (30,3% в группе вмешательства и 56,2% в группе сравнения (ОШ) 0,44 (95% ДИ, 0,20-0,95; p=0,04)). Также в группе вмешательства темп диуреза был выше (2420 мл против 1865 мл в контрольной группе, p=0,049) [26].

В недавно опубликованном исследовании J. Holm et al. (2024), был проведен объединенный пост-хок анализ двух рандомизированных, двойных слепых клинических исследований (GLUTAMICS I и II), в которых оценивалось влияние внутривенной инфузии L-глутаминовой кислоты на частоту послеоперационного ОПП у пациентов без сахарного диабета, перенесших аортокоронарное шунтирование. Общее число пациентов составило 791, из которых

# Применение ФПР в кардиохирургии RFR application in cardiac surgery

| Авторы, год                         | Количество<br>пациентов | Тип исследования                      | Цель исследования                                                                              | Характеристика<br>вмешательства                                                | Основные результаты                                                                                                                |
|-------------------------------------|-------------------------|---------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| G. Landoni et al.,<br>2024 [31]     | 3511                    | Многоцентровое РКИ (PROTECTION trial) | Оценка эффективности инфузии аминокислот в профилактике ОПП после кардиохирургии               | Инфузия Isopuramin 10%<br>2 г/кг/сутки от 24 до 72<br>часов                    | Снижение частоты ОПП в группе вмешательства (26,9% vs 31,7%, RR = 0,85, $\rho$ = 0,002)                                            |
| Y. Pu et al., 2019<br>[40]          | 69                      | Пилотное РКИ                          | Оценка нефропротективного действия аминокислот после ИК                                        | Инфузия аминокислот<br>Synthamin 17 Electrolyte<br>Free 100 г/сутки            | Снижение длительности<br>ОПП и увеличение диу-<br>реза у пациентов после<br>кардиохирургии                                         |
| M. Kazawa et al.,<br>2024 [26]      | 66                      | Моноцентровое РКИ                     | Изучение влияния амино-<br>кислот на частоту ОПП<br>у пациентов после<br>хирургии на аорте     | Инфузия аминокислот<br>Amiparen (20 г каждые 8<br>часов, до 3-х суток          | Снижение частоты ОПП (30,3% vs 56,2%, $p$ = 0,04); увеличение диуреза                                                              |
| F. Husain-Syed<br>et al., 2018 [21] | 110                     | Обсервационное<br>исследование        | Оценка предиктивной<br>значимости ФПР перед<br>операцией у пациентов<br>с нормальной СКФ       | Пероральное использование порошка красного мяса 1,2 г/кг                       | ФПР ≤ 15 мл/мин/1,73 м <sup>2</sup> ассоциирован с 11,8-кратным риском ОПП (AUC = 0,83)                                            |
| F. Husain-Syed<br>et al., 2019 [22] | 86                      | Обсервационное<br>исследование        | Изучение динамики ФПР после ОПП несмотря на нормализацию СКФ                                   | Оценка ФПР после ОПП,<br>повторная белковая на-<br>грузка через 3 месяца       | Снижение ФПР у паци-<br>ентов с ОПП даже при<br>восстановлении СКФ<br>и креатинина                                                 |
| B. Redaelli et al.<br>2025 [6]      | 812                     | Вторичный анализ РКИ «PROTECTION»     | Оценка эффективности инфузии аминокислот у пациентов с ХБП                                     | Инфузия Isopuramin 10%<br>2 г/кг/сутки от 24 до 72<br>часов                    | Снижение частоты ОПП у пациентов с ХБП (25,7% vs 32,4%; OR = 0,72; $\rho$ = 0,01)                                                  |
| J. Holm et al.,<br>2023 [20]        | 162                     | Анализ РКИ<br>(GLUTAMICS trial)       | Оценка влияния инфузии<br>L-глутамата на частоту<br>и выраженность ОПП<br>после кардиохирургии | Инфузия L-глутаминовой кислоты (0,125 М, 1,65 мл/кг/ч после индукции анестезии | Инфузия глутамата<br>не повлияла на частоту<br>ОПП, но в подгруппе<br>пациентов с ХБП наблю-<br>далась тенденция<br>к снижению ОПП |

391 получали глутамат, а 400 - физиологический раствор. Основной конечной точкой было определено развитие ОПП, диагностированное как увеличение уровня креатинина ≥ 50% по критериям RIFLE. Результаты показали, что инфузия глутамата была статистически значимо связана с уменьшением риска развития ОПП: относительный риск составил 0.49 (95% ДИ, 0.29-0.83; p = 0.008), а в многофакторной логистической регрессии эффект остался значимым (OR 0,47; 95% ДИ, 0,26–0,86; p = 0,02). Частота необходимости в заместительной почечной терапии была ниже в группе глутамата (0,5% против 1,2%). Таким образом, полученные данные указывают на потенциальный нефропротективный эффект глутаминовой кислоты в кардиохирургии у пациентов без диабета [20]. Авторы подчеркивают, что, несмотря на ретроспективный характер анализа, полученные результаты заслуживают дальнейшего подтверждения в будущих проспективных исследованиях.

Приведенные работы демонстрируют, что инфузия смеси аминокислот может значительно снизить риск почечных осложнений и улучшить клинические исходы у кардиохирургических пациентов. Несмотря на полученные результаты авторы заявляют о необходимости проведения крупных многоцентровых международных исследований.

Многоцентровое международное РКИ «PROTECTION», завершившееся в 2024 г., оценивало нефропротективные эффекты сбалансирован-

ной смеси аминокислот «Isopuramin 10%» в дозировке 2 г/кг в сутки у 3512 пациентов, перенесших кардиохирургические операции с ИК. Несмотря на отсутствие статистической разницы в таких важных показателях, как потребность в заместительной почечной терапии (1,4% в группе вмешательства против 1,9% в группе сравнения (ОР 0,73 (95% ДИ 0,43-1,22) p > 0,05)), продолжительность пребывания в ОРИТ и длительность госпитализации, авторам удалось продемонстрировать снижение частоты ОПП в группе с инфузией аминокислот (26.9% против 31,7 в группе плацебо ([OP] = 0.85; 95% [ДИ] 0.77-0.94; p=0.002). Полученные результаты свидетельствуют о положительном эффекте инфузии аминокислот в качестве средства нефропротекции, однако данное исследование не продемонстрировало различий в функции почек на 30-й, 90-й и 180-й дни после выписки пациентов из стационара. Таким образом, вопрос о влиянии инфузии сбалансированной смеси аминокислот на более значимые и долгосрочные клинические исходы остается открытым [29, 31].

Предполагается, что у пациентов с ХБП функциональный почечный резерв, как правило, снижен [6, 30, 41,], что ставит под сомнение эффективность внутривенной инфузии сбалансированной смеси аминокислот в данной популяции. С целью изучения специфической эффективности данной терапии у пациентов с ХБП был проведен подгрупповой анализ многоцентрового международного РКИ

«РКОТЕСТІОМ», включивший 812 пациентов с исходной СКФ < 60 мл/мин/1,73 м². Полученные данные подтвердили нефропротективный эффект аминокислот и в этой группе: частота ОПП оказалась значительно ниже в группе аминокислот по сравнению с плацебо (43,1% против 50,3%; относительный риск – 0,86; 95% ДИ: 0,74–0,99; p = 0,041).

Интересно, что эффективность вмешательства была сопоставима во всех исследованных подгруппах ХБП, стратифицированных по уровню СКФ (30–39, 40–49 и 50–59 мл/мин/1,73 м²). Особенно важно, что аминокислотная терапия ассоциировалась со снижением частоты тяжелого ОПП (3 стадия) более чем в два раза (2,7% против 5,6%; относительный риск – 0,48; 95% ДИ: 0,24–0,98; p = 0,038) [6, 30]. Таким образом, внутривенное введение аминокислот может рассматриваться как эффективная и безопасная стратегия профилактики ОПП у пациентов с ХБП, которым проводятся кардиохирургические вмешательства с использованием ИК [6, 30].

Ограничения применения ФПР. Функциональный почечный резерв известен более 20 лет, однако его количественная оценка до сих пор не стала рутинным методом в клинической практике. Это связано с вариабельностью данных из-за разных исследовательских протоколов и характеристик пациентов, а также отсутствием единого подхода к интерпретации его терапевтического потенциала [18].

Патологические состояния, такие как диабет, поликистоз почек, нефротические синдромы, ожире-

ние и гипертензия, могут как повышать, так и снижать исходную СКФ [10, 29]. Гиперфильтрация при физиологических состояниях, вероятно, связана с вовлечением большего количества нефронов, тогда как при патологии она обусловлена увеличением фильтрации в одиночных нефронах, что может усиливать повреждение почек [41]. Гиперфильтрация также характерна для острых состояний (травмы, гиперволемия, увеличенный сердечный выброс), особенно у молодых пациентов [24, 29, 48]. Однако механизмы острой гиперфильтрации и снижение ФРП в этих случаях пока изучены недостаточно, что подчеркивает необходимость дальнейших исследований и стандартизации методов оценки.

#### Заключение

Современные исследования показывают, что оценка ФПР с использованием белковой или аминокислотной нагрузки является важным инструментом для прогнозирования риска ОПП у кардиохирургических пациентов. Этот метод позволяет выявить скрытые нарушения почечной функции, которые не обнаруживаются при стандартных лабораторных тестах. Пациенты с низким ФПР могут получать более целенаправленное и индивидуализированное лечение. Более того, внутривенная инфузия сбалансированной смеси аминокислот может быть использована не только для диагностики, но и для профилактики дисфункции почек.

**Конфликт интересов.** Авторы заявляют об отсутствии конфликта интересов. Яворовский А. Г. и Выжигина М. А. являются членом редакционной коллегии журнала «Вестник анестезиологии и реаниматологии» с 2017 г., но к решению об опубликовании данной статьи отношения не имеет. Статья прошла принятую в журнале процедуру рецензирования. Об иных конфликтах интересов авторы не заявляли.

**Conflict of Interest.** The authors state that they have no conflict of interests. Yavorovskiy Andrey G. and Vyzhigina Margarita A. had been a member of the editorial board of the Messenger of Anesthesiology and Resuscitation since 2017, but has nothing to do with the decision to publish this article. The article has passed the review procedure accepted in the journal. The authors did not declare any other conflicts of interest.

**Вклад авторов**. Все авторы в равной степени участвовали в подготовке публикации: разработке концепции статьи, получении и анализе фактических данных, написании и редактировании текста статьи, проверке и утверждении текста статьи.

**Authors' contribution.** All authors made a substantial contribution to the conception of the work, acquisition, analysis, interpretation of data for the work, drafting and revising the work, final approval of the version to be published and agree to be accountable for all aspects of the work.

#### ЛИТЕРАТУРА

- Балахнин Д. Г., Черемных И. И., Ивкин А. А. и др. Проблема острого повреждения почек у кардиохирургических пациентов // Вестник анестезиологии и реаниматологии. – 2022. – Т. 19, № 5. – С. 93–101. http://doi. org/10.21292/2078-5658-2022-19-5-93-101.
- Каменщиков Н. О., Подоксенов Ю. К., Дьякова М. Л. и др. Острое повреждение почек в кардиохирургии: предиктивная диагностика в предоперационном периоде // Патология кровообращения и кардиохирургия. 2021. Т. 25, № 1. С. 40–51. http://doi.org/10.21688/1681-3472-2021-1-40-51.
- Полушин Ю. С., Соколов Д. В., Белоусов Д. Ю., Чеберда А. Е. Фармакоэкономическая оценка интермиттирующей и продолжительной заместительной почечной терапии // Вестник анестезиологии и реаниматологии. – 2017. – Т. 14, № 6. – С. 6–20. http://doi.org/10.21292/2078-5 658-2017-14-6-6-20.

# REFERENCES

- Balakhnin D. G., Cheremnykh I. I., Ivkin A. A. et al. The problem of acute kidney injury in cardiac surgery patients. *Messenger of Anesthesiology* and Resuscitation, 2022, vol. 19, no. 5, pp. 93–101. (In Russ.). http://doi. org/10.21292/2078-5658-2022-19-5-93-101.
- Kamenshchikov N. O., Podoksenov Y. K., Dyakova M. L. et al. Acute kidney injury in cardiac surgery: predictive diagnostics in the preoperative period. *Pathol Blood Circ Cardiac Surg*, 2021, vol. 25, no. 1, pp. 40–51. (In Russ.). http://doi.org/10.21688/1681-3472-2021-1-40-51.
- Polushin Y. S., Sokolov D. V., Molchan N. S. et al. Acute kidney injury during cardiac surgery with cardiopulmonary bypass. *Messenger of Anesthesiology and Resuscitation*, 2021, vol. 18, no. 6, pp. 38–47. (In Russ.). http://doi.org/10.21292/2078-5658-2021-18-6-38-47.

- Полушин Ю. С., Соколов Д. В., Молчан Н. С. и др. Острое повреждение почек при операциях на сердце с использованием искусственного кровообращения // Вестник анестезиологии и реаниматологии. 2021. Т. 18, № 6. С. 38–47. http://doi.org/10.21292/2078-5658-2021-18-6-38-47.
- Alshahrani S. Renin-angiotensin-aldosterone pathway modulators in chronic kidney disease: a comparative review // Front Pharmacol. – 2023. – Vol. 14. – P. 1101068. – http://doi.org/10.3389/fphar.2023.1101068.
- Baiardo Redaelli M., Monaco F., Bradic N. et al. Amino acid infusion for kidney protection in cardiac surgery patients with chronic kidney disease: a secondary analysis of the PROTECTION trial // Anesthesiology. – 2025. – Vol. 142, № 5. – P. 818–828. http://doi.org/10.1097/ALN.00000000000005336.
- Beaubien-Souligny W., Benkreira A., Robillard P. et al. Alterations in portal vein flow and intrarenal venous flow are associated with acute kidney injury after cardiac surgery: a prospective observational cohort study // J Am Heart Assoc. – 2018. – Vol. 7, № 19. – P. e009961. http://doi.org/10.1161/JAHA.118.009961.
- Bosch J. P., Saccaggi A., Lauer A. et al. Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate // Am J Med. – 1983. – Vol. 75, № 6. – P. 943–950. http://doi.org/10.1016/0002-9343(83)90343-0z.
- Brezis M., Silva P., Epstein F. H. Amino acids induce renal vasodilatation in isolated perfused kidney: coupling to oxidative metabolism // Am J Physiol Heart Circ Physiol. – 1984. – Vol. 247. – P. H999–H1004. http://doi. org/10.1152/ajpheart.1984.247.6.H999.
- Cachat F., Combescure C., Cauderay M. et al. A systematic review of glomerular hyperfiltration assessment and definition in the medical literature // Clin J Am Soc Nephrol. 2015. Vol. 10, № 3. P. 382–389.
- Claris-Appiani A., Ardissino G., Tirelli A. S. et al. Metabolic factors in the renal response to amino acid infusion // Am J Nephrol. – 1998. – Vol. 18. – P. 359–366. http://doi.org/10.1159/000013377.
- 12. De Lorenzo A., Bomback A. S., Mihic N. High protein diets and glomerular hyperfiltration in athletes and bodybuilders: is chronic kidney disease the real finish line? // Sports Med. − 2024. − Vol. 54, № 10. − P. 2481–2495. http://doi.org/10.1007/s40279-024-02086-1.
- De Moor B., Vanwalleghem J. F., Swennen Q. et al. Haemodynamic or metabolic stimulation tests to reveal the renal functional response: requiem or revival? // Clin Kidney J. – 2018. – Vol. 11. – P. 623–654.
- De Nicola L., Blantz R. C., Gabbai F. B. Nitric oxide and angiotensin II: glomerular and tubular interaction in the rat // J Clin Invest. 1992. Vol. 89, № 4. P. 1248–1256. http://doi.org/10.1172/JCI115709.
- De Nicola L., Blantz R. C., Gabbai F. B. Renal functional reserve in treated and untreated hypertensive rats // Kidney Int. – 1991. – Vol. 40, № 3. – P. 406–412. http://doi.org/10.1038/ki.1991.226.
- Fioretto P., Trevisan R., Valerio A. et al. Impaired renal response to a meat meal in insulin-dependent diabetes: role of glucagon and prostaglandins // Am J Physiol Renal Physiol. – 1990. – Vol. 258. – P. F675–F683. http://doi. org/10.1152/ajprenal.1990.258.3.F675.
- Fliser D., Franek E., Joest M. et al. Renal function in the elderly: impact of hypertension and cardiac function // Kidney Int. – 1997. – Vol. 51, № 4. – P. 1196–1204. http://doi.org/10.1038/ki.1997.163.
- 18. Fuhrman D. Y. The role of renal functional reserve in predicting acute kidney injury // Crit Care Clin. 2021. Vol. 37, № 2. P. 399–407. http://doi.org/10.1016/j.ccc.2020.11.008.
- 19. Gui Y., Dai C. mTOR signaling in kidney diseases // Kidney360. 2020. Vol. 1,  $\,$  No 11. P. 1319–1327. http://doi.org/10.34067/KID.0003782020.
- 20. Holm J., Vanky F., Svedjeholm R. Association of glutamate infusion with risk of acute kidney injury after coronary artery bypass surgery: a pooled analysis of 2 randomized clinical trials // JAMA Netw Open. − 2024. − Vol. 7, № 1. − P. e2351743. http://doi.org/10.1001/jamanetworkopen.2023.51743.
- 21. Husain-Syed F, Emlet D. R., Wilhelm J. et al. Effects of preoperative high-oral protein loading on short- and long-term renal outcomes following cardiac surgery: a cohort study // J Transl Med. − 2022. − Vol. 20, № 1. − P. 204. http://doi.org/10.1186/s12967-022-03410-x.
- Husain-Syed F., Ferrari F., Sharma A. et al. Preoperative renal functional reserve predicts risk of acute kidney injury after cardiac operation // Ann Thorac Surg. – 2018. – Vol. 105. – P. 1094–1101. http://doi.org/10.1016/j. athoracsur.2017.12.034.
- Inker L. A., Eneanya N. D., Coresh J. et al. New creatinine- and cystatin C-based equations to estimate GFR without race // N Engl J Med. – 2021. – Vol. 385. – P. 1737–1749. http://doi.org/10.1056/NEJMoa2102953
- 24. Jufar A. H., Lankadeva Y. R., May C. N. et al. Renal functional reserve: from physiological phenomenon to clinical biomarker and beyond // Am J Physiol Regul Integr Comp Physiol. 2020. Vol. 319, № 6. P. R690–R702. http://doi.org/10.1152/ajpregu.00237.2020.

- Polushin Y. S., Sokolov D. V., Belousov D. Yu., Cheberda A. E. Pharmacoeconomic evaluation of intermittent and continuous renal replacement therapy. *Vestn Anesteziol Reanimatol*, 2017, vol. 14, no. 6, pp. 6–20. (In Russ.). http://doi. org/10.21292/2078-5658-2017-14-6-6-20.
- Alshahrani S. Renin-angiotensin-aldosterone pathway modulators in chronic kidney disease: a comparative review. Front Pharmacol, 2023, vol. 14, pp. 1101068, http://doi.org/10.3389/fphar.2023.1101068.
- Baiardo Redaelli M., Monaco F., Bradic N. et al. Amino acid infusion for kidney protection in cardiac surgery patients with chronic kidney disease: a secondary analysis of the PROTECTION trial. *Anesthesiology*, 2025, vol. 142, no. 5, pp. 818–828. http://doi.org/10.1097/ALN.0000000000005336.
- Beaubien-Souligny W., Benkreira A., Robillard P. et al. Alterations in portal vein flow and intrarenal venous flow are associated with acute kidney injury after cardiac surgery: a prospective observational cohort study. *J Am Heart Assoc*, 2018, vol. 7, no. 19, pp. e009961. http://doi.org/10.1161/JAHA.118.009961.
- Bosch J. P., Saccaggi A., Lauer A. et al. Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate. *Am J Med*, 1983, vol. 75, no. 6, pp. 943–950. http://doi.org/10.1016/0002-9343(83)90343-0z.
- Brezis M., Silva P., Epstein F. H. Amino acids induce renal vasodilatation in isolated perfused kidney: coupling to oxidative metabolism. Am J Physiol Heart Circ Physiol, 1984, vol. 247, pp. H999–H1004. http://doi. org/10.1152/ajpheart.1984.247.6.H999.
- Cachat F., Combescure C., Cauderay M. et al. A systematic review of glomerular hyperfiltration assessment and definition in the medical literature. Clin J Am Soc Nephrol, 2015, vol. 10, no. 3, pp. 382–389.
- Claris-Appiani A., Ardissino G., Tirelli A. S. et al. Metabolic factors in the renal response to amino acid infusion. *Am J Nephrol*, 1998, vol. 18, pp. 359–366. http://doi.org/10.1159/000013377.
- De Lorenzo A., Bomback A. S., Mihic N. High protein diets and glomerular hyperfiltration in athletes and bodybuilders: is chronic kidney disease the real finish line? *Sports Med*, 2024, vol. 54, no. 10, pp. 2481–2495. http://doi. org/10.1007/s40279-024-02086-1.
- 13. De Moor B., Vanwalleghem J. F., Swennen Q. et al. Haemodynamic or metabolic stimulation tests to reveal the renal functional response: requiem or revival? *Clin Kidney J*, 2018, vol. 11, pp. 623–654.
- De Nicola L., Blantz R. C., Gabbai F. B. Nitric oxide and angiotensin II: glomerular and tubular interaction in the rat. J Clin Invest, 1992, vol. 89, no. 4, pp. 1248–1256. http://doi.org/10.1172/JCI115709.
- De Nicola L., Blantz R. C., Gabbai F. B. Renal functional reserve in treated and untreated hypertensive rats. *Kidney Int*, 1991, vol. 40, no. 3, pp. 406–412. http://doi.org/10.1038/ki.1991.226.
- Fioretto P., Trevisan R., Valerio A. et al. Impaired renal response to a meat meal in insulin-dependent diabetes: role of glucagon and prostaglandins. *Am J Physiol Renal Physiol*, 1990, vol. 258, pp. F675–F683. http://doi. org/10.1152/ajprenal.1990.258.3.F675.
- 17. Fliser D., Franek E., Joest M. et al. Renal function in the elderly: impact of hypertension and cardiac function. *Kidney Int*, 1997, vol. 51, no. 4, pp. 1196–1204. http://doi.org/10.1038/ki.1997.163.
- Fuhrman D. Y. The role of renal functional reserve in predicting acute kidney injury. Crit Care Clin, 2021, vol. 37, no. 2, pp. 399–407. http://doi. org/10.1016/j.ccc.2020.11.008.
- 19. Gui Y., Dai C. mTOR signaling in kidney diseases. *Kidney360*, 2020, vol. 1, no. 11, pp. 1319–1327. http://doi.org/10.34067/KID.0003782020.
- Holm J., Vanky F., Svedjeholm R. Association of glutamate infusion with risk of acute kidney injury after coronary artery bypass surgery: a pooled analysis of 2 randomized clinical trials. *JAMA Netw Open*, 2024, vol. 7, no. 1, pp. e2351743. http://doi.org/10.1001/jamanetworkopen.2023.51743.
- Husain-Syed F, Emlet D. R., Wilhelm J. et al. Effects of preoperative high-oral protein loading on short- and long-term renal outcomes following cardiac surgery: a cohort study. *J Transl Med*, 2022, vol. 20, no. 1, pp. 204. http://doi. org/10.1186/s12967-022-03410-x.
- Husain-Syed F., Ferrari F., Sharma A. et al. Preoperative renal functional reserve predicts risk of acute kidney injury after cardiac operation. *Ann Thorac Surg*, 2018, vol. 105, pp. 1094–1101. http://doi.org/10.1016/j. athoracsur.2017.12.034.
- Inker L. A., Eneanya N. D., Coresh J. et al. New creatinine- and cystatin C-based equations to estimate GFR without race. N Engl J Med, 2021, vol. 385, pp. 1737–1749. http://doi.org/10.1056/NEJMoa2102953
- Jufar A. H., Lankadeva Y. R., May C. N. et al. Renal functional reserve: from physiological phenomenon to clinical biomarker and beyond. *Am J Physiol Regul Integr Comp Physiol*, 2020, vol. 319, no. 6, pp. R690–R702. http://doi. org/10.1152/ajpregu.00237.2020.

- Kamenshchikov N. O., Anfinogenova Y. J., Kozlov B. N. Nitric oxide delivery during cardiopulmonary bypass reduces acute kidney injury: A randomized trial // J Thorac Cardiovasc Surg. – 2022. – Vol. 163, № 4. – P. 1393–1403. http://doi.org/10.1016/j.jtcvs.2020.03.182.
- Kazawa M., Kabata D., Yoshida H. et al. Amino acids to prevent cardiac surgery-associated acute kidney injury: a randomized controlled trial // JA Clin Rep. 2024. Vol. 10. Art. 19. http://doi.org/10.1186/s40981-024-00703-6.
- Keijzer-Veen M. G., Kleinveld H. A., Lequin M. H. et al. Renal function and size at young adult age after intrauterine growth restriction and very premature birth // Am J Kidney Dis. – 2007. – Vol. 50. – P. 542–551. http://doi. org/10.1053/j.ajkd.2007.06.015.
- Kikuchi H., Chou C. L., Yang C. R. et al. Signaling mechanisms in renal compensatory hypertrophy revealed by multi-omics // Nat Commun. – 2023. – Vol. 14. – P. 3481. http://doi.org/10.1038/s41467-023-38958-9.
- Kotani Y., Baiardo Redaelli M., Pruna A. et al. Intravenous amino acid for kidney protection: current understanding and future perspectives // Clin Kidney J. – 2024. – Vol. 18, № 2. – P. sfae409. http://doi.org/10.1093/ckj/sfae409.
- Landoni G., Fochi O., Di Prima A. L. et al. Intravenous amino acid therapy for kidney protection in chronic kidney disease patients undergoing cardiac surgery: a subgroup analysis of the PROTECTION trial // Anesthesiology. – 2024. – Vol. 140, № 2. – P. 123–134. http://doi.org/10.1097/ALN.00000000000004693.
- 31. Landoni G., Monaco F., Ti L.K. et al. A randomized trial of intravenous amino acids for kidney protection // New England Journal of Medicine. 2024. Vol. 391, № 12. P. 687–698. http://doi.org/10.1056/NEJMoa240376.
- 32. Langleben D., Fox B. D., Orfanos S. E. et al. Pulmonary capillary recruitment and distention in mammalian lungs: species similarities // Eur Respir Rev. − 2022. − Vol. 31, № 163. − P. 210248. http://doi.org/10.1183/16000617.0248-2021.
- 33. Liu K. D., Brakeman P. R. Renal repair and recovery// Crit Care Med. 2008. Vol. 36,  $\,$  No 4 Suppl. P. S187–S192. http://doi.org/10.1097/CCM.0b013e318168ca4a.
- 34. Losiggio R., Baiardo Redaelli M., Pruna A. et al. The renal effects of amino acids infusion // Signa Vitae. 2024. Vol. 20, № 7. P. 1–4. http://doi.org/10.22514/sv.2024.079.
- Lytvyn Y., Kimura K., Peter N. et al. Renal and vascular effects of combined SGLT2 and angiotensin-converting enzyme inhibition // Circulation. – 2022. – Vol. 146, No. 6. – P. 450–462. http://doi.org/10.1161/CIRCULATIONAHA.122.059150.
- 36. Mueller T. F., Luyckx V. A. Potential utility of renal functional reserve testing in clinical nephrology // Curr Opin Nephrol Hypertens. 2024. Vol. 33, № 1. P. 130–135. http://doi.org/10.1097/MNH.0000000000000930.
- Ostermann M., Cennamo A., Meersch M., Kunst G. A narrative review of the impact of surgery and anaesthesia on acute kidney injury // Anaesthesia. -2020. – Vol. 75, Suppl 1. – P. e121–e133. http://doi.org/10.1111/anae.14932.
- Ow C. P. C., Ngo J. P., Ullah M. M. et al. Renal hypoxia in kidney disease: cause or consequence? // Acta Physiol (Oxf). – 2018. – Vol. 222. – P. e12999. http://doi.org/10.1111/apha.12999.
- 39. Pontes R. B., Crajoinas R. O., Nishi E. E. et al. Renal nerve stimulation leads to the activation of the Na+/H+ exchanger isoform 3 via angiotensin II type I receptor // Am J Physiol Renal Physiol. − 2015. − Vol. 308, № 8. − P. F848−F856. http://doi.org/10.1152/ajprenal.00515.2014.
- Pu Y. The impact of continuous L-amino acid infusion on acute kidney injury in patients undergoing cardiac surgery requiring prolonged cardiopulmonary bypass // Nephrol Dial Transplant. – 2018. – Vol. 33, № 5. – P. 839–846. http://doi.org/10.1093/ndt/gfx265.
- 41. Ronco C., Bellomo R., Kellum J. A. Understanding renal functional reserve // Intensive Care Med. − 2017. − Vol. 43, № 6. − P. 917–923. http://doi.org/10.1007/s00134-017-4691-6.
- 42. Ronco C., Brendolan A., Bragantini L. et al. Renal functional reserve in pregnancy // Nephrol Dial Transplant. − 1988. − Vol. 3, № 2. − P. 157−161.
- Ronco C., Chawla L. S. Glomerular and tubular kidney stress test: New tools for a deeper evaluation of kidney function // Nephron. – 2016. – Vol. 134, № 3. – P. 191–194. http://doi.org/10.1159/000449235.
- Sällström J., Carlström M., Olerud J. et al. High-protein-induced glomerular hyperfiltration is independent of the tubuloglomerular feedback mechanism and nitric oxide synthases // Am J Physiol Regul Integr Comp Physiol. – 2010. – Vol. 299. – P. R1263–R1268. http://doi.org/10.1152/ajpregu.00649.2009.
- 45. Sharma A., Mucino M. J., Ronco C. Renal functional reserve and renal recovery after acute kidney injury // Nephron Clin Pract. − 2014. − Vol. 127, № 1−4. − P. 94−100. http://doi.org/10.1159/000363721.
- 46. Stevens L. A., Coresh J., Greene T. et al. Assessing kidney function measured and estimated glomerular filtration rate // N Engl J Med. 2006. Vol. 354, № 23. P. 2473–2483. http://doi.org/10.1056/NEJMra054415.

- Kamenshchikov N. O., Anfinogenova Y. J., Kozlov B. N. Nitric oxide delivery during cardiopulmonary bypass reduces acute kidney injury: A randomized trial. *J Thorac Cardiovasc Surg*, 2022, vol. 163, no. 4, pp. 1393–1403. http://doi. org/10.1016/j.jtcvs.2020.03.182.
- Kazawa M., Kabata D., Yoshida H. et al. Amino acids to prevent cardiac surgery-associated acute kidney injury: a randomized controlled trial. JA Clin Rep, 2024, vol. 10, Art. 19. http://doi.org/10.1186/s40981-024-00703-6.
- Keijzer-Veen M. G., Kleinveld H. A., Lequin M. H. et al. Renal function and size at young adult age after intrauterine growth restriction and very premature birth. *Am J Kidney Dis*, 2007, vol. 50, pp. 542–551. http://doi. org/10.1053/j.ajkd.2007.06.015.
- Kikuchi H., Chou C. L., Yang C. R. et al. Signaling mechanisms in renal compensatory hypertrophy revealed by multi-omics. *Nat Commun*, 2023, vol. 14, pp. 3481. http://doi.org/10.1038/s41467-023-38958-9.
- Kotani Y., Baiardo Redaelli M., Pruna A. et al. Intravenous amino acid for kidney protection: current understanding and future perspectives. Clin Kidney J, 2024, vol. 18, no. 2, pp. sfae409. http://doi.org/10.1093/ckj/sfae409.
- Landoni G., Fochi O., Di Prima A. L. et al. Intravenous amino acid therapy for kidney protection in chronic kidney disease patients undergoing cardiac surgery: a subgroup analysis of the PROTECTION trial. *Anesthesiology*, 2024, vol. 140, no. 2, pp. 123–134. http://doi.org/10.1097/ALN.00000000000004693.
- Landoni G., Monaco F., Ti L.K. et al. A randomized trial of intravenous amino acids for kidney protection. New England Journal of Medicine, 2024, vol. 391, no. 12, pp. 687–698. http://doi.org/10.1056/NEJMoa240376.
- Langleben D., Fox B. D., Orfanos S. E. et al. Pulmonary capillary recruitment and distention in mammalian lungs: species similarities. *Eur Respir Rev*, 2022, vol. 31, no. 163, pp. 210248. http://doi.org/10.1183/16000617.0248-2021.
- Liu K. D., Brakeman P. R. Renal repair and recovery. Crit Care Med, 2008, vol. 36, no. 4 Suppl, pp. S187–S192. http://doi.org/10.1097/CCM.0b013e318168ca4a.
- Losiggio R., Baiardo Redaelli M., Pruna A. et al. The renal effects of amino acids infusion. Signa Vitae, 2024, vol. 20, no. 7, pp. 1–4. http://doi. org/10.22514/sv.2024.079.
- Lytvyn Y., Kimura K., Peter N. et al. Renal and vascular effects of combined SGLT2 and angiotensin-converting enzyme inhibition. *Circulation*, 2022, vol. 146, no. 6, pp. 450–462. http://doi.org/10.1161/CIRCULATIONAHA.122.059150.
- Mueller T. F., Luyckx V. A. Potential utility of renal functional reserve testing in clinical nephrology. *Curr Opin Nephrol Hypertens*, 2024, vol. 33, no. 1, pp. 130–135. http://doi.org/10.1097/MNH.000000000000930.
- Ostermann M., Cennamo A., Meersch M., Kunst G. A narrative review of the impact of surgery and anaesthesia on acute kidney injury. *Anaesthesia*, 2020, vol. 75, Suppl 1, pp. e121–e133. http://doi.org/10.1111/anae.14932.
- Ow C. P. C., Ngo J. P., Ullah M. M. et al. Renal hypoxia in kidney disease: cause or consequence? *Acta Physiol (Oxf)*, 2018, vol. 222, pp. e12999. http://doi. org/10.1111/apha.12999.
- Pontes R. B., Crajoinas R. O., Nishi E. E. et al. Renal nerve stimulation leads to the activation of the Na+/H+ exchanger isoform 3 via angiotensin II type I receptor. Am J Physiol Renal Physiol, 2015, vol. 308, no. 8, pp. F848–F856. http://doi.org/10.1152/ajprenal.00515.2014.
- Pu Y. The impact of continuous L-amino acid infusion on acute kidney injury in patients undergoing cardiac surgery requiring prolonged cardiopulmonary bypass. Nephrol Dial Transplant, 2018, vol. 33, no. 5, pp. 839–846. http://doi. org/10.1093/ndt/gfx265.
- Ronco C., Bellomo R., Kellum J. A. Understanding renal functional reserve. *Intensive Care Med*, 2017, vol. 43, no. 6, pp. 917–923. http://doi.org/ 10.1007/s00134-017-4691-6.
- 42. Ronco C., Brendolan A., Bragantini L. et al. Renal functional reserve in pregnancy. *Nephrol Dial Transplant*, 1988, vol. 3, no. 2, pp. 157–161.
- Ronco C., Chawla L. S. Glomerular and tubular kidney stress test: New tools for a deeper evaluation of kidney function. *Nephron*, 2016, vol. 134, no. 3, pp. 191–194. http://doi.org/10.1159/000449235.
- Sällström J., Carlström M., Olerud J. et al. High-protein-induced glomerular hyperfiltration is independent of the tubuloglomerular feedback mechanism and nitric oxide synthases. *Am J Physiol Regul Integr Comp Physiol*, 2010, vol. 299, pp. R1263–R1268. http://doi.org/10.1152/ajpregu.00649.2009.
- Sharma A., Mucino M. J., Ronco C. Renal functional reserve and renal recovery after acute kidney injury. Nephron Clin Pract, 2014, vol. 127, no. 1–4, pp. 94–100. http://doi.org/10.1159/000363721.
- Stevens L. A., Coresh J., Greene T. et al. Assessing kidney function measured and estimated glomerular filtration rate. N Engl J Med, 2006, vol. 354, no. 23, pp. 2473–2483. http://doi.org/10.1056/NEJMra054415.

- 47. Thomson S. C., Blantz R. C. Glomerulotubular balance, tubuloglomerular feedback, and salt homeostasis // J Am Soc Nephrol. 2008. Vol. 19, № 12. P. 2272–2275. http://doi.org/10.1681/ASN.2007121326.
- Udy A. A., Baptista J. P., Lim N. L. et al. Augmented renal clearance in the ICU: results of a multicentre observational study of renal function in critically ill patients with normal plasma creatinine concentrations // Crit Care Med. – 2014. – Vol. 42. – P. 520–527. http://doi.org/10.1097/CCM.00000000000000029.
- Upadhyay A. SGLT2 inhibitors and kidney protection: mechanisms beyond tubuloglomerular feedback // Kidney360. – 2024. – Vol. 5, № 5. – P. 771–782. http://doi.org/10.34067/KID.000000000000425.
- Warwick J., Holness J. Measurement of glomerular filtration rate // Semin Nucl Med. – 2022. – Vol. 52. – P. 453–466. http://doi.org/10.1053/j. semnuclmed.2021.12.005.
- Thomson S. C., Blantz R. C. Glomerulotubular balance, tubuloglomerular feedback, and salt homeostasis. *J Am Soc Nephrol*, 2008, vol. 19, no. 12, pp. 2272–2275. http://doi.org/10.1681/ASN.2007121326.
- Udy A. A., Baptista J. P., Lim N. L. et al. Augmented renal clearance in the ICU: results of a multicentre observational study of renal function in critically ill patients with normal plasma creatinine concentrations. *Crit Care Med*, 2014, vol. 42, pp. 520–527. http://doi.org/10.1097/CCM.00000000000000029.
- Upadhyay A. SGLT2 inhibitors and kidney protection: mechanisms beyond tubuloglomerular feedback. *Kidney360*, 2024, vol. 5, no. 5, pp. 771–782. http://doi.org/10.34067/KID.0000000000000425.
- Warwick J., Holness J. Measurement of glomerular filtration rate. Semin Nucl Med, 2022, vol. 52, pp. 453–466. http://doi.org/10.1053/j. semnuclmed.2021.12.005.

#### ИНФОРМАЦИЯ ОБ АВТОРАХ:

ФГАОУ ВО «Первый Московский государственный медицинский университет имени И. М. Сеченова» (Сеченовский Университет) МЗ РФ, 119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2

Федеральный научно-клинический центр специализированных видов медицинской помощи и медицинских технологий Федерального медико-биологического агентства России, 115682, Россия, Москва, Ореховый бульвар, д. 28

#### Касим Тимур Хайдарович

ассистент кафедры анестезиологии-реаниматологии ИКМ им. Н. В. Склифосовского, Первый Московский государственный медицинский университет имени И. М. Сеченова» (Сеченовский Университет). E-mail: kasim\_t\_kh@staff.sechenov.ru, ORCID: 0000-0002-7483-3211

#### Яворовский Андрей Георгиевич

д-р мед. наук, профессор, зав. кафедрой анестезиологииреаниматологии ИКМ им. Н. В. Склифосовского, Первый Московский государственный медицинский университет имени И. М. Сеченова» (Сеченовский Университет). E-mail: yavorovskiy\_a\_g@staff.sechenov.ru, ORCID: 0000-0001-5103-0304, SPIN-код 1343-9793

#### Мандель Ирина Аркадьевна

канд. мед. наук, доцент кафедры анестезиологии-реаниматологии ИКМ им. Н. В. Склифосовского, Первый Московский государственный медицинский университет имени И. М. Сеченова» (Сеченовский Университет), доцент кафедры анестезиологии-реаниматологии, Федеральный научно-клинический центр специализированных видов медицинской помощи и медицинских технологий Федерального медико-биологического агентства России. E-mail: irina.a.mandel@gmail.com, ORCID: 0000-0001-9437-6591, SPIN-код 7778-2184

## Политов Михаил Евгеньевич

канд. мед. наук, доцент кафедры анестезиологииреаниматологии ИКМ им. Н. В. Склифосовского, Первый Московский государственный медицинский университет имени И. М. Сеченова» (Сеченовский Университет). E-mail: politov\_m\_e@staff.sechenov.ru, ORCID: 0009-0003-5085-7766

#### **INFORMATION ABOUT AUTHORS:**

I. M. Sechenov First Moscow State Medical University (Sechenov University), 8, Trubeckaya str., Moscow, Russia, 119991

Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, 28, Orekhovy Boulevard, Moscow, Russia

#### Kasim Timur H.

Assistant of the Department of Anesthesiology and Intensive Care of the N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University).

E-mail: kasim\_t\_kh@staff.sechenov.ru, ORCID: 0000-0002-7483-3211

#### Yavorovsky Andrey G.

Dr. of Sci. (Med.), Professor, Head of the Department of Anesthesiology and Intensive Care of the N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University).

E-mail: yavorovskiy\_a\_g@staff.sechenov.ru,
ORCID: 0000-0001-5103-0304.

#### Mandel Irina A.

Cand. of Sci. (Med.), Associate Professor of the Department of Anesthesiology and Intensive Care of the N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), Associate Professor of the Department of Anesthesiology and Intensive Care Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia.

E-mail: irina.a.mandel@gmail.com, ORCID: 0000-0001-9437-6591, , SPIN-код 7778-2184

#### Politov Mikhail E.

Cand. of Sci. (Med.), Associate Professor of the Department of Anesthesiology and Intensive Care of the N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University).

E-mail: politov\_m\_e@staff.sechenov.ru,

ORCID: 0009-0003-5085-7766

#### Ногтев Павел Владимирович

канд. мед. наук, доцент кафедры анестезиологии-реаниматологии, ИКМ им. Н. В. Склифосовского, Первый Московский государственный медицинский университет имени И. М. Сеченова» (Сеченовский Университет). E-mail: p\_naii@mail.ru, ORCID: 0000-0002-5553-0880, SPIN-код: 2803-6502

#### Халикова Елена Юрьевна

канд. мед. наук, заведющая учебной частью, доцент кафедры анестезиологии-реаниматологии ИКМ им. Н. В. Склифосовского, Первый Московский государственный медицинский университет имени И. М. Сеченова» (Сеченовский Университет).

 $E\text{-}mail: khalikova\_e\_yu@staff.sechenov.ru,$ 

ORCID: 0000-0001-8661-9418

#### Буланова Екатерина Львовна

канд. мед. наук, доцент кафедры анестезиологии-реаниматологии ИКМ им. Н. В. Склифосовского, Первый Московский государственный медицинский университет имени И. М. Сеченова» (Сеченовский Университет). E-mail: bulkadoc@mail.ru, ORCID: 0000-0002-8909-6592

#### Выжигина Маргарита Александровна

д-р мед. наук, профессор кафедры анестезиологии-реаниматологии ИКМ им. Н. В. Склифосовского, Первый Московский государственный медицинский университет имени И. М. Сеченова» (Сеченовский Университет). E-mail: scorpi1999@mail.ru, ORCID: 0000-0002-6024-0191

#### Поснов Антон Александрович

врач-ординатор кафедры анестезиологии-реаниматологии ИКМ им. Н. В. Склифосовского, Первый Московский государственный медицинский университет имени И. М. Сеченова» (Сеченовский Университет). E-mail: posnov30@gmail.ru, ORCID: 0009-0003-5085-7766

## Тлисов Борис Магометович

врач — сердечно-сосудистый хирург, отделение сердечно-сосудистой хирургии университетской клинической больницы № 1, Первый Московский государственный медицинский университет имени И. М. Сеченова» (Сеченовский Университет).

E-mail: borya0994@inbox.ru, ORCID: 0000-0003-4094-8771

# Петровский Владимир Федорович

студент, Первый Московский государственный медицинский университет имени И. М. Сеченова» (Сеченовский Университет).

E-mail: petrovskyvolodymyr@yandex.ru, ORCID: 0009-0006-1561-1033

#### Nogtev Pavel V.

Cand. of Sci. (Med.), Associate Professor of the Department of Anesthesiology and Intensive Care of the N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University).

E-mail: p\_naii@mail.ru, ORCID: 0000-0002-5553-0880.

#### Khalikova Elena Yu.

Cand. of Sci. (Med.), Head of the Academic Department, Associate Professor of the Department of Anesthesiology and Intensive Care of the N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University).

E-mail: khalikova\_e\_yu@staff.sechenov.ru, ORCID: 0000-0001-8661-9418

#### Bulanova Ekaterina L.

Cand. of Sci. (Med.), Associate Professor of the Department of Anesthesiology and Intensive Care of the N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University). E-mail: bulkadoc@mail.ru, ORCID: 0000-0002-8909-6592

#### Vyzhigina Margarita A.

Dr. of Sci. (Med.), Professor of the Department of Anesthesiology and Intensive Care of the N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University).

E-mail: scorpi1999@mail.ru, ORCID: 0000-0002-6024-0191

#### Posnov Anton A.

Resident Physician of the Department of Anesthesiology and Intensive Care of the N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University). E-mail: posnov30@gmail.ru, ORCID: 0009-0003-5085-7766

# Tlisov Boris M.

Cardiovascular Surgeon, Department of Cardiovascular Surgery, University Clinical Hospital № 1, I. M. Sechenov First Moscow State Medical University (Sechenov University). E-mail: borya0994@inbox.ru, ORCID: 0000-0003-4094-8771

# Petrovsky Vladimir F.

Student, I. M. Sechenov First Moscow State Medical University (Sechenov University).
E-mail: petrovskyvolodymyr@yandex.ru,
ORCID: 0009-0006-1561-1033